

A fully-fledged, fully expandible, computer with large typewriterstyle keyboard, programmable function keys, PET compatible. Gives 24 colours and sound, (to the degree that It can be used to compose music). High resolution graphics module available as extra. Speaks BASIC. Easy-lo-use, even for beginners. New VIC-20 material is available and more is on the way. Supplied with easy-to-read, easy- 10 - use manual, suitable tor begimers and children. Programs can be stored on optonal VIC lape recorder. Commodore approved supplier.
Texas Instruments TL-99/4
(PAL colour TV compatible)
Usable literally within minues of unpacking. Anyone can use it without previous computer exparience or progranming knowledge. Powertul 16K. BASIC language. Special features high resolution graphics let you create animaled displays, charts, graphs; built-in music synthesizer allows you to build notes, and chords; equation calculator for maths solutions. Designed for home management, educational and entertainment use. Large amount of educational software available on modules for youngslers. Programs can also be stored using good quality tape recorder Texas instruments approved supplier.

Four new-technology computers bring you colour, sound, high resolution graphics. All with plug-in program modules. All at unique Computer Supermarket prices.

To Computer Supermarkel Lid, Douglas House.
Queens Square, Corby, Northants.
Please send me
Commodore VIC-20 at §192.50 Texas Instruments Ti-99/4 al £302.50 Atari 400 at $£ 348.50$ Atari 800 at $£ 648.50$ Hardware/Software list
Alari lape recorder at $£ 45$ inc. VAT, $p \& p$
\square VIC tape recorder at $£ 40$ inc. VAT, p\&p
1 enclose my cheque for ε
Or debil my Access/Barclaycard/Diners Card No. (1)

Signature
Name
Address
(BLOCK CAPITALS PLEASE)

Atari 400
Brings the tamily music, art, education, entertaument. Ageneral purpose personal computer that's easy to operate andoffers 16 colours, each with 8 intensities; high resolution graphics; 4 sound synthesizers: 57 key alphanumeric keyboard with upper/ lower case, inverse video, full screen editing, four way cursor control, 29 graphics keys. Programming languages: BASIC. ASSEMBLER. PiLOT. Programs can be stored on optional Alari tape recorder. Atari approved supplier.

Atari 800

Top-ol-the-line personal computor. Advanced peripheral components. comprehensive software library. Modular design precludes obsolescence. 16 colours (8 intensities), 4 squand synthesizers; 57 keys with upper/lower case. uverse video: tuil screen ediling, lour-woy cursor control, 29 graphics keys. Proglamming languages: BASIC. EXTENDED BASIC. ASSEMBLER, PILOT, PASCAL. Programs can be stored on optional Atari tape recorder. Atari approved supplier.

THESE EXCITING NEW PERSONAL COMPUTERS CONNECT TO VIRTUALLY ANY COLOUR OR MONO TV. Full range of peripherals will be available for each computer. All units are complete and ready to use. 13 amp plug fitted. Thorn colour TV's can be supplied for use with these computers. Details on application.

Prices include VAT. p\&p \& insurance £3.50

Your reninttance should be made payable to Computer Supermarket Lid, and shall remain your money until the goods have been despatched to you at the address specified. All goods ollered are subject to Computer Supermarket condituons of sale, copies avalable on request. Registered in England No. 2646589.
PREST區 SERVICE Prestel subscribers can obtain furthei detals on inese computers - and place orders lor them - throught the Prestel service. PRESTEL No. 400400

Step by step with the camputer system designed for tomarraw.
 * 6502 inicroprocessor
 * 2 K Monitor TANBUG
 * Intelligent socket accepts keypad

 Microtan65

 Microtan65 $£ 79$ - On Ready $£ 79$ - On Ready £69:

 £69:} or full ASCll Keyboard

* Chunky Graphics and Lower Case Options
* Connects to unmodified B/W or Colour TV

For the first time buyer or experienced user. Microtan 65 is a superb route into personal computing. If you are looking for a sophisticated machine with the capability of expansion into a professional system. then this is the

computer for you. Step by step with the computer system designed for tomorrow

6502 Microprocessor
Probably the most popular CPU (central processing unit) for personal computers, having a powerful
instruction set and architecture.
2 K Monitor TANBUG
The built-in 'mind' of the machine TANBUG controls all system functions and gives comprehensive machinecode facilities. Functions include:- set and clear breakpoints, single step through program, execute program. copy block of memory, modify memory locations anci much more.

Intelligent keyboard socket For absolute beginners we can supply an easy to use 20 -way Hex keypad; for the more experienced user there is a full typewriter style ASCII keyboard. Either way, Microtan will work out exactly which type you are using and act appropriately.

Chunky Graphics Options
For drawing simple lines and graphs,, or for animated games, Chunky Graphics is a low cost answer. This set of chips plug into the Microtan board
and allow graphics to be built up on the screen at a resolution of 64 rows by 64 columns.

Lower Case Option
To extend the character set to 128 characters, allows for real descenders on lower case characters and a set of extra symbols and characters for simple graphics
Microtan Accessories
20-way Hex keypad MPS 1 Basic power supply
Aerial connector lead
Full ASCII Keyboard MPS 2 Full system power supply
Mini - motherboard
Microtan is available ready-built or as a kit. We recommend that you should have some soldering experience before attempting the Microtan Kit, although if you do run into problems you can make use of our "Get you Going" service
 into Tanex and are supplied with comprehensive user manuals.

Parallel I/O

When fully expanded Tanex includes two V.I.A.s (Versatile Interface Adaptors) which implement the cassette interface and the parallel I/O ports. Software in TANBUG V2.3 enables you to plug in and use a Centronics type printer. The two V.I.A.s also contain counter timers that can be used for a variety of applications enhanced by the use of the integral handshake facilities.

Serial $1 / 0$
Also on the expanded board is a serial I/O port that can be used to interface RS232 or 20Ma loop terminals or VDU's, again all controlled by TANBUG V2.3.

bangerne

corifilutis jusiens |lic

Forehill Works, Ely, Cambs. CB7 4AE.

The first step in expanding your system. Tanex provides the extra facilities necessary for the serious programmer. Memory expansion: Tanex has provisions for up to 7 K of static RAM and up to 14 K of EPROM using 2716 or 2732 chips.

XBUG and BASIC
XBUG is a 2 K extension to TANBUC that contains a mnemonic assembler and disassembler and cassette firmware running at 300 Baud CUTS, standard or high speed 2400 Baud Tangerine standard with 6 character filenames. Tangerine have taken out a full O.E.M. licence for Microsoft BASIC. the microcomputer industry standard, this is a full feature implementation with interrupt and machine code handling, and a superb program editor.
(telephone for details).
TANEX

* 7K Static Ram
* 10K Microsoft Basic
* 32 Parallel IIO lines
* 1 Serial I/O port
* XBUG
* Casselte Interface
 by Glemn Price

Editorial/Circulation Control 67 High Street,
Daventry, Northampton.
NN11 4BQ
Tel: 0327271841

Publisher/Editorial
Director
David Raven
Production Editor Glenn Price

Editorial, Consultant
Trevor George
Group Sales Director
R.E. Pynegar

Advertising
(03272) 71702

Circulation \& Office
Manager
Diana Ward
Subscription Control Suzanne Gilbert

Distribution

Seymour Press Ltá
334 Brixton Road London
Published by Stagpark Limited Russell Anderson House 18 Hamilton Road Nottingham

Production

Newstead Publishing Ltd Nottingham
Printed by
LSG Lincoln

SLIDE PROJECTOR INTERFACE

 An inexpensive way of storing static praphic images to supplement lectures, computer aided learning, training, advertising or sales promotions with out the need of a human operator. 18
GENIE PROJECT

This is a useful circuit which demonstrates an application for putting a taped instruction into an EPROM. 23

MEMORY Some of the traumatic experiences lan Sinclair encountered having decided to take the risk to expand a TRS 80 to 48 K .25

COMPUTER AIDED

 DESIGN The firftin our series of CAD programmes on a ZX87 with 16 K and printer. Given a design of circuit and values it is simple to evaluate THE EXACT PERFORMANCE, BUTITISVIRTUALLY IMPOSSIBLE to start from a desired characteristic \& calculate the exact values of components to produce it-but a computer does help. 27
MICRO-COMPUTER

UPDATE
An in depth look at the small computer market.

AERO GENERATORS

Generating electricity mechanically from the wind is well known. Gyroscopic strain forces can be a problem involving high rectification costs which compare unfarourably with static generators.

KIT REVIEW

A step by step guide to building a logic probe making a useful piece of test equipment for digital repair work or commissioning new circuits. 48

TALKING SHOP

News \& Views that you are not always meant to hear from inside the electronics industry.

SOFTWARE

Part six of Mike James's feature on Building Basic to help you write your own programmes. 61

NEWS

7 International News
11 Electronic Components News
13 Computer Product News
41 Special Offer
65 Book Shop
67 Book Review

Sinclair $\mathbf{X X 8 1}$ Personal Compi the heart of a system that grows with you.

1980 saw a genuine breakthrough the Sinclair ZX80, world's first complete personal computer for under £100. Not surprisingly, over 50,000 were sold.

In March1981, the Sinclair lead increased dramatically. For just £69.95 the Sinclair ZX81 offers even more advanced facilities at an even lower price. Initially, even we were surprised by the demand-over 50,000 in the first 3 months!

Today, the Sinclair ZX81 is the heart of a computer system. You can add 16 -times more memory with the ZX RAM pack. The ZXPrinter offers an unbeatable combination of performance and price. And the $Z X$ Software library is growing every day.

Lower price: higher capability

With the ZX81, it's still very simple to teach yourself computing, but the ZX81 packs even greater working capability than the ZX80

It uses the same micro-processor, but incorporates a new, more powerful 8K BASIC ROM - the 'trained intelligence' of the computer. This chip works in decimals, handles logs and trig, allows you to plot graphs, and builds up animated displays

And the $Z \times 81$ incorporates other operation refinements - the facility to load and save named programs on cassette, for example, and to drive the new $\mathbb{Z X}$ Printer.

Every 7×81 comes with a comprehensive specially- written manual - a complete course in BASIC programming, from first principles to complex programs

Higher specification, lower price -

 how's it done?Quite simply, by design. The ZX80 reduced the chips in a working computer from 40 or so, to 21. The ZX81 reduces the 21 to 4 !

The secret lies in a totally new master chip. Designed by Sinclair and custom-built in Britain, this unique chip replaces 18 chips from the ZX 80 !

New, improved specification

- Z80A micro-processor - new

 faster version of the famous $\mathbb{Z 0}$ chip, widely recognised as the best ever made.- Unique 'one-touch' key word entry: the $\mathbf{Z X 8 1}$ eliminates a great deal of tiresome typing. Key words (RUN, LIST, PRINT, etc.) have their own single-key entry.
- Unique syntax-check and report codes identify programming errors immediately.
- Full range of mathematical and scientific functions accurate to eight decimal places.
- Graph-drawing and animated display facilities
- Multi-dimensional string and numerical arrays.
- Up to 26 FOR/NEXT loops.
- Randomise function - useful for games as well as serious applications.
- Cassette LOAD and SAVE with named programs.
- 1K-byte RAM expandable to 16 K bytes with Sinclair RAM pack.
- Able to drive the new Sinclair printer.
- Advanced 4-chip design: microprocessor, ROM, RAM, plus master chip-unique, custom-built chip replacing 18 ZX80 chips.

Kit or built -it's up to you! You'll be surprised how easy the ZX81 kit is to build: just four chips to assemble (plus, of course the other discrete components) - a few hours' work with a fine-tipped soldering iron. And you may already have a suitable mains adaptor- 600 mA at 9 V DC nominal unregulated (supplied with built version).

Kit and built versions come complete with all leads to connect to your TV (colour or black and white) and cassette recorder.

Available nowthe IX Printer for only £49., 5

Designed exclusively for use with the ZX81 (and ZX80 with 8K BASIC ROM), the printer offers full alphanumerics and highly sophisticated graphics.

A special feature is COPY, which prints out exactly what is on the whole TV screen without the need for further intructions.

At last you can have a hard copy of your program listings-particularly

How to order your ZX81

BY PHONE - Access, Barclaycard or
Trustcard holders can call 01-200 0200 for personal attention 24 hours a day, every day.
BY FREEPOST - use the no-stampneeded coupon below. You can pay
useful when writing or editing programs.

And of course you can print out your results for permanent records or sending to a friend.

Printing speed is 50 characters per second, with 32 characters per line and 9 lines per vertical inch.

The ZX Printer connects to the rear of your computer - using a stackable connector so you can plug in a RAM pack as well. A roll of paper (65 ft long $\times 4$ in wide) is supplied, along with full instructions.
by cheque, postal order, Access, Barclaycard or Trustcard.
EITHER WAY - please allow up to 28 days for delivery. And there's a 14-day money-back option. We want you to be satisfied beyond doubt and we have no doubt that you will be.
fit your Sinclair ZX80.or ZX81, the
RAM pack simply plugs into the existing expansion port at the rear of the computer to multiply your data/program storage by 16 !

Use it for long and complex programs or as a personal database. Yet it costs as little as half the price of competitive additional memory.

With the RAM pack, you can also run some of the more sophisticated ZX Software - the Business \& Household management systems for example.

6 KIngs Parade, Cambridge, Cambe., CB2 1SN. Tal: (0276) 68104 \& 21282.

To: Sinclalr Research Ltd, FREEPOST 7, Cambrldge, CB2 1 YY.				Ord
Cty	Item	Code	Item price \&	Total ε
	Sinclair ZX81 Pe ZX81 BASIC man	12	49.95	
	Ready-assembl Price includes 2	11	69.95	
	Mains Adaptor(s)	10	8.95	
	16K-BYTE RAM	18	49.95	
	Sinclair ZXPrint	27	49.95	
	8K BASIC ROM	17	19.95	
	Post and Packin			2.95
\square Please tick if you require a VAT receipt				
*I enclose a cheque/postal order payable to Sinclair Research Ltd, for $£$ *Please charge to my Access/Barclaycard/Trustcard account no.				
-Please delete/complete as applicable. $1 \perp 1111111$ 1 1111 Please prin				
Name: Mr/Mrs/Miss				
Address:				
\qquad				
FREEPOST - no stamp needed. Offer applles to UK only.				EAC

Chapter Three - 16-bit and applications

Historians of electronics and computing will not need reminding of past technological events however, many of the younger readers may enjoy a short recap.

Chapter 1 concerned the majoradvances in silicon technology which occured in the late fifties and early sixties. This event culminated in the USA landing two men onto the surface of the Moon - 20th July, 1969. It also marked a new stage in the evolution of semi-conductor technology, the arrival of "large scale integration' (LSI) and Chapter 2. From this same process evolved the microprocessor and supporting devices for the micrcomputer. In 1975/76 each month revealed a new process or piece of high technology:-

Nov-75 - First use of 16K RAMchipsina commercial computer system.

Feb-76 - First samples of 16K RAMs enter the market.

Mar-76 - First commercial ROM to hit 32 K level is marketed.

May-76 - First of the enhanced 8-bit general purpose microprocessors appear.

Sep-76 - First commercial bubble memory production starts with a 92 K device.

With the aid of the excellent chronology published annually in 'Electronics International' I could continue recording firsts upto this present time. Chapter 2 then was all about developing devices to buildup the complete microcomputer system, now we come to Chapter 3.

While device technology continues to forge ahead and plays a leading role in the expansion of the hardware systems a limiting factor is the development of software. We will see more emphasis being given to the software development of existing systems and increased applications packages.
Machines that can run on wide range of software will be in demand making them less dependant on a particular programming language.
In order to provide the large memory which these machines require, manufacturers are turning to 16 -bit microprocessors (see Jan 82 issue of
'Electronics \& Computing Monthly'). Although the first 16 -bit devices were launched back in 1978, they are only just beginning to make an appearance in microcomputers. The ACT SIRIUS 1, launched at the 'Which Computer Show' in January, and featured in our new products section this month, is highly rated and threatens to stir up trouble for both PET and APPLE. Tandy have also announced a 16-bit machine by the end of 1982 and it is very likely there are others under wraps.

All of these developments are of course, quite typical of the electronics industry and it certainly doesn't pay to hang around waiting for whats coming next. If you've made a decision to buy a micro' then don't be put off, otherwise you will never get started. One other cautionary note to bear in mind is it often takes quite a while to get things right with a new high technology product and although the specification looks very attractive, delivery and support may not always be as well established.
On the subject of development and the problems companies run into with the design of custom made logic chips, it was disappointing news to hear that the BBC machine would not be available in time for the start of the series. The program went on the air on January 14th screened specifically at Schools. Only 300 of the promised 500 BBC Micro's were in position, and there still doesn't seem any likelyhood of the general public obtaining them before the end of March.

We ourselves have ordered one through a private individual, in order to get a standard production model, so that may explain our lack of reviews etc, on this very promising machine.

I personally can think of very few occasions when developments using custom designed chips are ready on time and it would surely be more sensible for manufacturers to take this into account, with launch dates. The problems that I see having resulted for both Acorn and the BBC is that they have now soured the massive public enthusiasm for their product which resulted in thousands of
orders being placed with virtually no advertisement cost involved. In addition it hasn't done much good to the sales of the Acorn Atom which despite the announcemet of the BBC machine, is highly rated and regarded as a reliable home computer. Perhaps with hindsight it would have been better to have kept the BBC Micro under wraps for a bit longer and produced a less ambitious model based around an existing Micro with a proven track record. Still I suppose we can all be wise after the event.

The result of our request in previous issues for articles, projects and software, has been very encouraging and we would like you to continue sending them in. I am afraid we have slowed down in our response to reader's correspondence, almost in direct proportion to the increase in our magazine sales. To this end we are installing - yes you've guessed it - a microcomputer. With the aid of this new wonder machine which will cost --an arm and a leg - I can hopefully speed up my personal response to readers. If it all works correctly you won't even know if it's me writing to you or the impersonal word processor. I am quite certain however, that there will still be plenty of readers and contributors who still receive one of my hastily hand-written notes. It would surprise readers to learn how uncomputerised ediorial offices of computing magazines are.

One final note, our apologies to a certain gentleman living in Bolton whosetelephone number appeared in an advertisement last month for Knights TV of Aberdeen. The incorrect dialing code published resulted in Mr X from Bolton, receiving dozens of telephone calls intended for Knight's.

Publisher

Dr. John Nunn (right) and the Chess Champion Mark V computer ponder over the Russian problem, watched by International Master David Levy.

British Firm Launch Heart Rate Meter

A British company based in New Barnet has developed a new battery powered heart rate meter for use by Athletes. A photo electricsensorclipson a finger with the instrument strapped to the wrist during exercise. The first reading is made about 10 seconds after the meter is attached and it is calibrated to indicate on a scale from 30 to 200 pulses per minute.

The instrument is said to be very useful in determining the maximum natural heart-rate of athletes under sustained maximum effort and also the recovery of heart-beat to normal level after extertion.

Further information can be oblained by telephoning George Dudley Sports, 01-440 0910.

Milton

Keynes
User Group

First

Seminar
In an effort to spread the gospel of computers and information technology, Milton Keynes User Group have held a Saturday Seminar/Workshop. Over 75 people attended and seminars were held on "Micros in Education", ZX8I Guide, Atom Review and Speech Synthesis. In addition there
was a Sharp Computer review, Micros in Busines, TRS80. Several trade stands were also in attendance.
Due to the good response to the pilot workshop, plans have now been made to hold quarterly Saturday Seminars. Milton Keynes User Group meets weekly on a Tuesday evening at Woughton Centre, Milton Keynes. Their meetings include short sessions on such subjects as assemblers, basic operating systems etc; which are optional, while the rest of the group develop software games in addition to more serious programs. Anyone is welcome with or without a machine and for more details contact John Chewter Milton Keynes 676996.

Chess Experts Embarrassed by Computer

Hot on the heels of our Computer Chess feature (January issue) which predicted the growing challenge of computers against the grand masters. We now have a report of a chess computer outsmarting several leading Russian chess experts. Soviet chess problem expert, L. Zagorujko, won first prize in an important competition in 1972. By composing a particular chess problem for which a distinguished panel of judges was not able to find a solution - apart from the one proposed by Zagorujko himself. A chess problem must have only one possible solution in order to win such a competition. After nearly ten years have passed since the competition and the problem has appeared in many newspapers and magazines around the world (without any solutions having been published) a chess computer the

Chess Champion Mark V has come up with not just one but three correct solutions. International chess experts were said to be astounded by the machines discovery during a "man-versus-machine" chess problem-solving contest at the end of a chess tournament held in Brighton. The Mark V, manufactured by Scisys Computers Ltd., was competing against International Master Dr. John Nunn. The Zagorujko problem was one of six 'brain-teasers' shown to Nunn and the Mark V by Mr Barry Barnes, Vice President of the Problem Commission of the World Chess Federation. Nunn eventually gave up on the Russian's problem, saying he felt there was probably more than one solution but he could not find it. The Mark V however continued and produced Zagorujko's solution plus two others.

Telephone Terminal
 Development between ICL and Sinclair

A new sophisticated telephone terminal is to be jointly developed by a joint venture link up between Sinclair and ICL. Incorporated in with the system would be Sinclair's own flat-screen TV display which is currently still under development. ICL also announced in a report published in the Financial Times that they planned to manufacture a personal computer designed by RAIR, a British company. This particular computer is designed for the small business market.
The desk-top terminal to be
developed with Sinclair would have a built in screen about 12 inches across and 1 inch deep. It would be used to display information transmitted from one computer terminal to another also for voice communication. The terminal naturally lends itself to bc incorporated in to an electric mail system. Plans by Sinclair to start production of the flatscreen TV are due to start in about six months time at a factory in Scotland. Initial output is expected to be Im screens annually rising to 3 m by the end of next year.

NASCOM USERS

Take a look at the NASCOM APPROVED HS-IN STORAGE SYSTEM. Where else can you get features like these , , ,

A full on screen instant display of the catalogue
Auto vertification of each file as it is written.
CRC error checking.
Link selectable 2 Mhz or 4 Mhz option.
Fast data transfer rate of 6000 bps .
Powered from NASBUS.
$8^{\prime \prime}$ sq NASBUS compatible PCB.
Far more reliable than any floppy disk system.
112 K on-line storage with 2 drive system.
The HS-IN has a Command Set which makes it a floppy-disk "look-alike". It can load an 8 K program in under 11 seconds and can store up to 56 K (28 files) on each side of tape. Why spend $£ 700$ on a floppy disk system when the less expensive HS-IN system has a command set like this.

BRIDGE THE GAP BETWEEN EXPENSIVE FLOPPY DISK SYSTEMS AND UNRELI,ABLE CASSETTES.

B - Write a Basic file
C - Instant display of catalogue.
D - Delete file.
J - Jump to Basic.
N - Jump to NAS-SYS.
Q - Warm start to NASPEN text editor
R - Read a file.
T - Transfer file to another drive.
W - Write a file.
X - Exit and rewind cassettes.
Z - Warm start to Basic.
This Mini-Cassette Storage System is technologically far ahead of anything like it on the market and is extremely reliable into the bargain. AND THE COST?
Single Drive System built and tested
Double Drive System built and tested
Carriage $£ 3.50$.

OFFERNOI

ALL RAM B boards supplied until April 30th come with an EXTRA 32K FREE on board.

OFFERNO2

NASCOM 2 built. 48 K RAM B board built, 3 A PSU
ONLY $£ 360 \div$ VAT. SAVE $£ 37.50$ SEE OFFER 1 OFFERNO 3
NASCOM 2 built, 48K RAM B board built, 3A PSU, HS IN SINGLE DRIVE SYSTEM
ONLY $£ 530$ + VAT. SAVE $£ 66.50$ SEE OFFER 1
ALL OFFERS END APRIL 30TH 1982

OFFERNO4

NASCOM 2 built, 48K RAM B board built, 3A PSU, HS-IN single drive system, EPSON MX80FT-1, NASPEN \& ALL CABLES ONLY $£ 900$ + VAT. SAVE $£ 125.50$ SEE OFFER 1
OFFERNO $\overline{5}$
NASCOM 3,48K RAM B built, Gemini Intelligent Video Card (IVC)
ONLY £540 + VAT. SAVE $\mathbf{f 6 5}$ SEE OFFER 1
OFFERNOG
SHARP MZ80K WITH SUPER GRAPHICS + 5 GAMES, EPSON MX80FT-1 WITH PAPER.
ONLY £825 + VAT. SAVE £229

QUALITY MEMORIES

AT PRICES THAT CANNOT BE BEATEN IN THE U.K
MICRO_SPARES can supply these memories in quantities from 1 to $10,000+$. Parts delivery is fast orders received by 4.30 pm are shipped same day.
All memories are guaranteed for 1 year from date of purchase. Memories supplied are good quality but should you have a
faulty part a replacement will be sent as soon as the part is received without question.
Thousands of memories have already been supplied to Manufacturers Computer Traders, Government Bodies and Individuals all over the U.K. and the continent. If you are buying in large quantities Please telephone for price. Official orders are welcome!

2114L	(200ns \& 300 ns Iow power	$1-49$ $96 p$	$50-249$
	Suitable for Acorn Atoms		
2114N	(200ns \& 300ns)	96p	93p
4116	(250ns)	63p	63p
	(200ns)	65p	63p
	(150ms)	75p	73p
270B	(450ns)	1.40p	1.34p
2716		2.05p	1.92p

MICRO-SPARES have now become the MICROVALUE GROUP member supplying Scotland and now add super new products like the Gemini, Sharp \& Epson to the MICRO-SPARES range. SEE MICROVALUE AD IN THIS MAG. On pages 24 \& 25

SUPPLIERS TO TRADE LOCAL GDVERNMENT EDUCATION
 INDIVIDUALS INDUSTRY

EDINBURGH

Buy an EPSON PRINTE
Get a COMPUTER
YEs - You wILL RECEIVE A FREE
SINCLAIR ZX81 WITH EVERY ONE OF THE MODELS BELOW. EVEN THOUGH THE PRICE IS GOOD - BUT HURRY THIS OFFER LASTS AS LONG AS THE ZX81's ARE IN STOCK

EPSON M X80T	$£ 359+$ VAT
EPSON MX80FT1	$£ 399+$ VAT
EPSON MX80FT2 (new type)	$£ 465+$ VAT
EPSON MX100	$£ 575+$ VAT

PAYMENT AND DELIVERY

Payment is by Cheque, Postal Order, ACCESS, VISA etc. PLEASE add postage and VAT. Postage on component orders under $£ 30$ is 50p. All in stock items sent same day. All none Kit items have a 1 year guarantee. Olficial orders welcome. Discount on large orders by arrangement.

Computer Open Days to be Held in key Cities

Exhibition specialist Couchmead Communications Ltd; is to hold a one-day computer exhibition almost every fortnight throughout 1982. The exhibitions, called Computer Open Days, will be held in key cities throughout the country. John Godley, managing director of Couchmead explained that each Computer Open Day will have about fifteen exhibitors who will collectively show a broad range of computers and peripheral services. Each show will open from $10.00 \mathrm{a} . \mathrm{m}$. to 5.00 p.m. and admission will

Videodisc Concept Slow to Get Going

Video Disc Players which have been hailed as the next generation of video recording systems which could possibly replace tape are not catching on as quickly as manufacturers would have liked.
The first of these machines to successfully hit the market was from the entertainment group RCA. After a major investment program of $£ 100 \mathrm{~m}$ to develop a video dise system RCA have announced cut backs in their production targets. RCA have sold 60,000 units since their machine was launched which issubstantially below their target figure of 200,000 forcast when the video dise player went on sale eight months ago.
The company say they have actually produced in excess of 135,000 units however many of these are still held in stock by suppliers and are said to subject to heavy discounting. New dise titles are being launched all the time by RCA and it is hoped that by the year end their will be more than 300 to choose from.
be by ticket obtainable free from the exhibitors and the organisers.
Godley confidently expects an average attendance of around 400 at each show "We have already held three Computer Open Days this year, and these have attracted an average of 200 visitors with little advance publicity," he said. The computer industry's response to the Computer Open Day idea has been very encouraging," Godley added. "The Open Day concept offers companies an inexpensive way of exhibiting their products and services regionally, and a number of firms have already booked for the whole series.
The Computer Open Day Programme for the first four months of 1982.

JANUARY

13th: SOUTHAMPTON,
Polygon Hotel,
Cumberland Place.
27th: CHELTENHAM,
Queen's Hotel,

The Promenade.

FEBRUARY

10th: HARROGATE, Majestic Hotel, Ripon Road.
24th: SWANSEA, Dragon
Hotel, The Kingsway.

MARCH

10th: NOTINGHAM, Albany Hotel,
St. James's Street.
24th: IPSWICH,
Great White Horse Hotel, Tavern Street. APRIL
14th: WESTON-SUPER-MARE,
Grand Atlantic Hotel,
Beach Road. 28th:
MANCHESTER,
Grand Hotel, Aytoun Street.
Other venues planned include:
Rugby, Taunton, Newport, Glasgow, Sheffield, Liverpool, Edinburgh, Birmingham and Newcastle-upon-Tyne.
Further information on the Computer Open Day series of exhibitions may be obtained from Couchmead Communications Ltd., St. Bernards House, Stoney Lane, London, SE 19 3BU, tel: 01-653-1101, up to 23.12.1981, and at their new address: Couchmead House, 153 High St., London, SE20 7DS, tel: 01-778-1102, from 23.12.1981.

Video Genie Prize Winner

The lucky winner of our Video Genie competition was picked out from many thousands of entries by Mr Robert Stead of Lowe Electronics.
The splendid prize was won by Mr B. C. Towers, of 63. Brook Hall Road, Ipswich. Congratulations.

MIRO-CHIP THEFTS CAUSE CONCERN

Thefts of a new kind are worrying manufacturers and the authorities in the USA. This new type of crime has recently involved the removal of $£ 1.4 \mathrm{~m}$ worth of semiconducter devices from Monolithic Memories Incorporated a Californian based component manufacture (Financial Times) Thefts from the major manufacturers in Silicon Valley are not now uncommon and it is reported that they are losing on average $£ 10.2 \mathrm{~m}$ worth of goods a year. This most recent theft at Monolithic is reported to be unusually large. Thieves took
more than 450,000 circuits and only required a small van to cart them away.
The devices stolen were all ready for shipment and had been completely tested to military standards. The concern of the company and undoubtably the American authorițies is that there could be some International involvement and that the devices could end up behind the Iron Curtain. The problems facing manufacturers is severe since extremely valuable devices can simply be carried away in a persons pocket.

THE DREADED GOLF PROGRAM

In the December issue of E\&CM we published a "Golf Program" which caused a few tears. Anamended version was again published in the January issue however, several readers still found problems with it. We suspect the ZX81 keyboard may be the cause of some of the errors. (we have a full size keyboard) also the fact that it is a very long listing may have produced further errors.

For readers who only purchased the January issue we have printed below additional notes which should provide all the answers.

This program does work - honest - we have seen it in action also, it has been laoriously keyed in again from the magazine.

[^0]
136 New Words from Celdis for DIGITALKER Speech Synthesis System

A new Read Only Memory (ROM) chip set is now available from Celdis which adds a further 136 new words to the standard vocabulary for National Semiconductor's DIGITALKER speech synthesis system. Known as the DT1057, the chip set comprises two 64 K ROMs which contain the new 136 words as well as the 138 words previously available.

Essentially, DIGITALKER comprises a speech processor chip and the speech ROMs which, when combined with an external filter amplifier and speaker, forms a system that will generate high-quality speech, including natural inflections (such as local accents). The SPC is capable of directly accessing up to 128 K -bits of memory (1.E. the two 64 K -bit ROMs which form the DTI057), however, for applications requiring additional vocabulary, the memory addressing capability can be expanded with a minimal amount of external logic.

Other DIGITALKER chip sets available from Celdis include the DT1000 Evaluation Kit with a 138 word vocabulary, the DT1051 Evaluation Kit with an 18 word vocabulary and the DT1052 Kit with Basic numbers. These kits allow designers and engineers to evaluate the DIGITALKER chip sets prior to designing them into an end product.

The DT1000 Evaluation Board contains all the necessary components required to output high-quality speech, including an SPC controller, two speech ROMs, linear filter, 0.5 W audio amplifier, keyboard and COPSff processor, complete with the necessary explanatory data. The only external hardware required to operate the kit is a single $7-11 \mathrm{~V}$ d.c. power supply and a speaker chosen for the size and quality required.

The two speech ROMs provided with the DT1000 contain the original 138 word vocabulary consisting of numbers, letters of the alphabet, a

New Software Conversion Tools

Rapid Recall are now able to offer two new software conversion tools that will allow programs written for the Z80 and 6800 family of processors to be converted for use with the Intel $8086 / 8088$ processors. Known as Zcon (for the Z80) and Mcon (for the 6800), the converters have been developed by Intel. Designed to run under Intel's powerful ISIS 11 operating system, both Zcon and Mcon assume that the source program is in Intel file format on floppy disc, and that either source is capable of
being assembled without errors.

Interest for the new converters is expected to come from established Z80 or 6800 users who wish to use the 16 -bit architecture of the $8086 / 88$, without spending time and effort on software conversion.

For further information:

Rapid Recall Limited
Rapid House
Denmark Street
High Wicombe, Bucks.
Telephone: (0494) 26271
Telex: 837931
selection of useful nouns, verbs and tones and five different individual silencedurations of 20 mSec , to 320 mSec in length. The silence durations are provided to allow phrases to be constructed with variable pauses between words. This can also be of help when joining two words together to form one, such as 'milli ampere', where a period of silence between the two words adds to the overall authenticity.

The kit can be operated in six different operating modes, each controlled by programs resident in the COPS processor. Each mode is selected by entering a pre-defined key sequence on the keyboard. These modes include automatically outputing each word in the library sequentially.
repeating a selected word, building up and storing short phrases for later output, outputing a 'canned' phrase in which selected words can be changed, a simple game and outputing the hexadecimal equivalent of a decimal number input.

All DIGITALKER chip sets can be easily interfaced to most popular microprocessors for integration into a complete system. Typical applications will include teaching aids, clocks, telecommunications, computer games and a wide range of consumer products.

For further information:

 Celdis37 Loverock Road Reading
Berks
RG3IED
Telephone: (0734) 586191

New Low-Power Version of Z80

Zilog have just introduced a new version of their Z80 8-bit microprocessor which consumes only 10% of the power of the standard Z80. Knownas the $Z 80 \mathrm{~L}$. the new processor is available for operation at clock rates of $1 \mathrm{MHz}, 1.5$ MHz , or 2.5 MHz as identified by the suffix L1. L2 or L3 respectively.

Power consumption for the Z80L family is 75 mW , compared with 500 to 750 mW for the standard part, and is therefore suited for use in hand-held or portable battery powered products. By the same token, the low power consumption allows battery backup to be implemented easily in systems or where the application relies on continuous processing.

Another important feature of the Z80L is its full pin and software compatibility with the Z80 allowing it to be used in existing circuit boards without the need for expensive circuit re-design. In addition, the new device is fully supported by Z80 development systems and in-circuit emulators allowing products based on the Z80L to
be developed, tested and debugged quickly, thus reaching the market place in the shortest possible time.

The Z80L can be used with the complete range of Z 808 -bit peripheral devices currently offered by Zilog. In the near future a new range of lowpower peripherals will be announced including versions of the PlO (Parallel input / output), SIO (serialinput/output), CTC (counter/timer circuit) and DART (dual asynchronous receiver/transmitter). These devices will consume about 10% of the power of currently available products at prices substantially lower than CMOS equivalents.

The Z80L family employ a single +5 V power supply and operate over the temperature range 0 to $70^{\circ} \mathrm{C}$. They are available in either ceramic or plastic packages.

For further information:

Zilog (UK) Limited

Babhage House

King Street
Maiclenherad
Berks SL6 IDU
Telephone: (0628) 36131
Trese: 848609

WHY PAY MORE

NOW FANTASTIC VALUE FOR BOTH HOME AND BUSINESS

BASF or ATHANA fully guaranteed diskettes. FREE LIBRARY CASE for $5 \%{ }^{\circ}$.

B or A005	SSSD		£17.50		¢18.50
B or A055	SSDD	51/4	£20.25	8	£23.00
B or A505	DSSD	51/4	£24.95	8	£25.00
B or A555	DSDD	51/4	£28.05	8	£29.00
Please quote disk drive when ordering					
R180	Ribbon	EPSO	N M $\times 80$		£ 9.99
Continuous paper - Music, lined, plain, with or without perf, stubs all same price.					
$11 \times 91 / 2$	Box of 2000 sheets 60 gsm 1 part				£10.50
$11 \times 141 / 2$	Box of 2000 sheets 60 gsm 1 part				£11.20
$11 \times 1515 / 16$	Box of 2000 sheets 60 gsm 1 part				£11.60
	2000 Address labels 1 to web				£ 9.00

FULL RANGE OF MAGNETIC MEDIA, COMPUTER RIBBONS AND PAPER, PLEASE PHONE. PLEASE ADD VAT TO ALL PRICES
Delivery: Pack of Disks $£ 1.50$ Box of paper $£ 3.00$ Massive discounts for volume/ trade orders All major credit cards accepted $01-6434290$

202 Stanley Park Road, Carshalton, Surrey SM5 3JP (EC/2B)

Now open, yout LOCAL stockist of the latest and best in personial and business computing.
vllenctule system

$$
\text { RS } 80 \text { Compatible, } 40 / 80 \text { Track Dises. Printers. }
$$

SUPERBRALN
The small Business Computer (64 k Ram)

- 350k Discs: $£ 1,850$
- 350k Discs: $£ 1,850$
- 700k Discs: $£ 2.199$
- Software. Wordstar £215
- Mailmerge $£ 65$
- Datastar £170

Integrated accounts system, just $£ 1,000$.
TANTS ADAPTOR
Access 180,000 Page Data Base for just $£ 169$.
BOORE, SOFTMARE, WEDA, PERMPMERALS
Can't get here? Write or call for full list (large S.A.E.)
All prices VA.T extra. Finance/Leasing
MICRO BUSINESS SYSTEMS
C. T. Maddison Lid.

The Crofts
Witney. Oxford
Tel: (0993) 73145
Open 900.530 Monday Friday
Open 900-12.00 Saturday.

1117-๕ญK with 48 Kbytes of memory and integrated cassette

MZ 80K - Personal Computer $£ 350$
MZ 80B- Scientific/Educational $£ 1,095$

Full range of Sharp peripherals available Also software and consumables. All prices exclude delivery and VAT. Finance arrangements available.

Sales \& Service 51 Canterbury Street Cambridge CB4 3OG Telephone: (0223)521192
Systems Development 152 High Street
Huntingdon PE186TF
Telephone: (0480) 51721

COMPUTER SERVICES AND
POLYTECHNIC BOOKSHOP
(AT TEESIDE POLYTECHNIC)
1 KING EDWARD SOUARE, MIDDLESBROUGH, CLEVELAND

VIDEO GENIE MAIN DEALER

Full servicing facilities.

Printers, Discs, Tapes etc. always available.
Plus the largest selection of computer Books in Cleveland.

CALL OR PHONE 0642-242017 for current prices.

Lightweight Computing

 A compact stand-alone microcomputer that occupies about the same desk area as a piece of foolscap paper has been introduced by Equinox Computers under the brand name "Episode"."Episode" is a new lightweight computer powered by the Z80A microprocessor.
It is claimed that the machine will operate with virtually any VDU and printer, and can be used as one of the stations in a network linked to other equipment such as the Government approved Equinox 200. Mobility is a prime asset. It weighs only 15 lb , making it easy to transport and nudge aside to make desk space for other work.
Though physically small (7.5 inches high x 9.5 inches wide x 14.5 inches deep), the Episode has a large integral storage capacity. This is provided by two, 5.25 inch floppy disk drives which can be either single or double sided and

The compact Episode microcomputer (left) from Equinox Computers takes up approximately the same desk space as a piece of foolscap paper.

96 TPI), thus giving from 400 KB to 1.6 MB of unformatted storage.
Other features are two RS232C serial interfaces and a Centronics compatible parallel interface; a battery operated calendar clock, and 64 K of dynamic RAM.
In addition to standard CP/M compatible word processing and information management software systems, Equinox will be offering Episode with a suite of market proven commercial packages, including Invoicing, Stock Control, Sales, Purchase and Nominal Ledgers and Sales Management. For the software writer, there will be a wide range of high level languages and utilities, including BASIC, Fortran, Cobol, Pascal, APL, etc.
Episode is available only from Equinox and its approved distributors and may be purchased with the user's choice of VDU and printer or as a sta ndalone unit. The latter configuration with 1.6 MB of storage is competitively priced at $£ 1995$ plus VAT.
Enquiries to: Mike Kusmirak at Equinox Computers on 01-

MARCH 1982

NEXT MONTH

In Britain's first electronics \& computer applications magazine

LOW COST COMPUTER KEYBOARD

This project explains how to build a low cost detacheable keyboard for the ZX-81. With a bit of luck this project will help the thousands of users who experience difficulties keying instructions into the 81.

REAL TIME CLOCK FOR THE MICROTAN 65

The basic design of this project is for the Microtan system using the I/O area facilities thus making the clock invisible to the system until required. It is built around the Real Time Clock IC from R.S. Components. A printed circuit board is also available for this project.

THEBIGMEMORY MACHINE

The Archives 111 is reviewed by the well known author Chris Bidmead. Chris takes a critical look at this machine which while no one pretends it to be in the home computing range it will be of considerable interest to readers who have more ambitious computing plans in mind.

VIC-20 Special feature

A review of the Arfon expansion unit and applications report on the Vic will feature in this issue.

The Sirius 16-bit Personal Computers

The ACT Sirius 1 is a third generation 16 -bil personal computer specifically designed for business. At a price of $£ 2,395$ for the basic system which ACT claim is one of the best price/performance ratios available for a personal computer.
Developed by Chuck Peddle, formerly of Commodore and generally recognised as the father of personal computing, the ACT Sirius has 128 K bytes semiconductor memory as standard, with plug-in modules taking it up to 512 K bytes. It comes complete with a 1.2 Mbyte twin floppy drive, video monitor and detachable keyboard in an attractive ergonomic package.
It has a wide range of software and two operating systems, CP/ M-86 and the IBM specified MSDOS open up a large
library of existing applications programs. For software houses there is a wide choice of languages - compiled BASIC, COBOL, PASCAL, and FORTRAN. Microsoft's BASIC 80 is supplied as standard. In addition MicroModeller and Wordstar packages are available on the ACT Sirius along with ACT's own PULSAR accounting system. ACT are the sole distributor of the Sirius in the UK and Eire. They will provide a field engineering service and maintain a comprehensive stock of parts. A network of 100 business system dealers will support the Sirius at a local and regional level. First deliveries of the Sirius to end users will be February.
For further information contact Chris Buckham 021454 8585.

VIC 20 ExpansionSystem

Arfon Microelectronics have not wasted any time in launching an expansion unit for the VIC 20. The unit comprises of a seven cartridge fully integrated system housed in analuminium shell the same colour as the VIC. The system has its own power supply which will also meet the requirements of a printerbeing developed by Arfon, which it is hoped will retail for less than £100.
Memory cartridges are available with a choice of 3 K (2

Eprom sockets) 8 K or 16 K RAM cartridges which will fit the VIC 20 alone or fit into the expansion board.
All the products described are approved by Commodore. The expansion system will retail for $£ 85$ plus VAT and the memory cartridges $3 \mathrm{~K}-\mathrm{f} 26$, $8 \mathrm{~K}-£ 39,16 \mathrm{~K}-£ 65$.

For further details:

Contact Arfon Microelectronics Ltd., Cibyn Industrial Estate, Caernarfon, Gwynedd, Wales.

Low Cost Daisy Wheel Printers

AMBAR Components Limited have just come to an agreement with Olivetti Peripheral Equipment (O.P.E.) to supply, from stock, a range of daisy wheel printers, floppy dise drives and hard disc (Winchester) drives.
Low cost daisy wheel printers, first patented in 1969 and produced in volume since 1975, have 13 inch or 17 inch platens, print bi-directionally at 20 or 30 characters per second in high quality word processor standard, and have Centronics or RS 232/ V24 interface as standard. Other interface options are available. THE MODEL NUMBERS ARE DY 211 AND DY 311. Floppy disc drives have beenin mass production since 1974 and O.P.E. are recognised as a leader in this field with production running in excess of 50 thousand units per year.

AMBAR are stocking $5 /{ }_{4}^{\prime \prime \prime}$ drives with soft or hard sectoring, single or double sided, single or double density 125 to 500 K bytes, unformatted storage with standard ANSI/Shugart interface. THE MODEL NUMBERS ARE FD 501 AND FD 502. Winchester-type fixed magnetic disc drives are available in two types, the first is a $5 / 4$ " with 7.5 megabytes storage and Seagate interace; the second type is a first for the U.K. and is available NOW from Ambar, a $51 /{ }^{\prime \prime}$ Winchester with 1 N TEGRAL TAPE BACK-UP, 12.3 megabytes storage and Multibus, LSI 11, S 100 interfacing. THE MODEL NUMBERS ARE HD 561 AND HDB 513.
Data and pricing information are available from Ambar Components Limited, at 0296 34141, Telex 837427.

晞 	
風 すưo 	
 에N ～～in oifo	
ㄹ －ダN	

[^1]

 \qquad

TECHNICAL FEATURE

 COMPUTER INTSLIDE PROJECT

Information is that which enables us to make decisions. It may take a variety of forms: numeric, textual, sonicand pictorial. The most familiar of these is probably numeric. As humans, our inability and dislike of handling this class of information was one of the prime motivations, many years ago, for the development of the digital electronic computer. Techniques for numeric information processing via computers are now well established. In many areas of application such as automatic process control, scientific analysis, simulation, and computer aided design/manufacture the prominent role of the computer is most apparent.

Over the last decade computer technology has turned its attention to yet another form of information - words and text. Advances in the power of both microcomputer systems and data storage techniques have been combined toproduce a multitude of document, text and word processing systems. Like numeric computation, text handling is now a standard facility on most micros. By means of appropriate software packages it is possible to keep (and periodically update) address lists, compose essays or letters and analyse text for authorship and style.

Currently, there is "teeming" activity in yet a third area of information processing - graphics. Graphic information may take many different forms. Broadly, however, these fall into two fundamental categories - based upon either static or animated images. These may originate from two possible sources. Either they may be generated by a computer program or captured by some form of camera. Independently of their source these images may be stored on an appropriate storage medium and then retrieved for display via a suitable screen device. Presently, there is much interest in computer systems able to process pictorial information of this type-
Fig 1. Computer Controlled Slide Projection
systems also frequently employ slide presentation techniques in order to supplement material presented via a VDU screen. In addition slides are often widely used for advertising and sales promotion particularly when automated display systems can be set up and left running without a human operator.

Computer based training and aiding systems that involve the use of slide images will require a facility that enables the interconnection of their embedded microcomputer to the external picture projection equipment. In order to achieve this some form of hardware/software interface is required - as depicted in Figure 1. Microcomputer peripherals are usually interconnected by means of one of the internationally accepted interfacing standards. The most popular of these are the RS-232C, IEEE-488, CAMAC, S-100 and so on. Unfortunately, there are no commonly agreed upon standards for the interfacing of "exotic" peripherals such as slide projectors - video tapes or videodisks. In view of this arbitrary nonstandard interfaces often have to be used. The basic function of the interface is to convert control signals produced by the computer into a form that are acceptable to and which can be handled by the slide projector. Obviously, the detailed design of the interface will depend upon the nature of both the microsystem and the slide projector(s) to which it is to be interfaced.

Most modern slide projectors depend upon the use of some form of slide storage

dISPLAY DEVICE

(e.g. PROJECTOR SCREEN)

 image.
magazine. These are usually capable of holding from 50 to 100 images. The Kodak CAROUSELS-AV2000, for exa mple, can hold up to 80 slides in its circular magazine. Projectors of this kind will undoubtedly offer facilities that permit the use of a remote "hand-held" controller. Typically, this consists of a series of push-button switches mounted on a small keypad. The switches control the motion of the slide magazine (either forward or backward) and also provide a means of focussing. The wires running from the remote controller are cabled into the projector by means of a multiway plug that is inserted into a matching socket mounted on the projector.

The wiring scheme of a typical remote control keypad (that of the Kodak CAROUSEL S-AV2000 is depicted in Figure 2. Essentially, it is constructed from four simple switches. The first of these, A, causes the slide magazine to be moved forward one position each timeitis pressed. B, the second switch, has the opposite effect. Switches C and D, together, are responsible for focussing the projected

When designing a computer interface for the type of projector described above the remote control socket provides aneasy way of introducing the computer generated control signals. By suitably inter-connecting lines P1, P2 and P3 it is possible to replace switches A and B by two equivalent

(C) Computer interface

computer controlled relay switches. Once this has been done it is a simple matter to operate these under sof tware control via a
Fig 2. Remote Controller for a Slide Projector
(A) Projector Interface

suitable output port on the microcomputer. Most of these provide TTL signals that can be used to activate a transistor circuit thatis designed to provide sufficient drive power to operate the external relay. Such a circuit is shown in the lower part of Figure 2.
Typical computer I/O ports may be based upon IC chips such as the INS 8255 N PIA, MOS 6522 VIA, MC682IP PIA or the Z80A P10-depending upon the microcomputer system used. We have used a MOS technology 6522 VIA embedded in a PET host system to drive our relays. This provides $8 \mathrm{I} / \mathrm{O}$ lines that may thus be used to drive up to four slide projectors.

(B) Wiring Arrangement

Sequential Projection

Based upon their repertoire of image retrieval strategies slide projectors may be categorised as belonging to one or other of two general classes. The first, and simplest, of these represents those projectors that are only able to operate in a sequential access mode. Projectors in the second class are more versatile. Members of this category are able to provide their user with the capability of randomly retrieving and displaying images. However, projectors of this type require a more sophisticated interface than that outlined above. In view of this, they will be discussed in more detail in the next section.

Controlling a single sequential projector by computer is a fairly straight-forward matter once the hardware interface has been constructed. Assuming that the interface connections are brought out through lines PA0 and PAI of the PET User Port (see Figure 2) the programshown in figure 3A will enable a user to control the action of the projector. The PET keyboard is used as an input device. Typing the letter F causes the magazine to advance to the next slide while typing the letter B results in a backspace operation therebyenabling the
previous slide to be viewed. Two control subroutines are provided. That at lines 300 through 380 is responsible for generating a pulse to activate relay F within the interface. The other, at lines 400 through 480 generates a pulse to activate relay B. This program and interface have been extensively used to control a Kodak SAV2000 projector.

The major limitation of a simple single projector configuration lies in its small storage capacity - 80 slides. The system could be expanded to handle 320 images by attaching a further three projectors. However, for many applications this too may be insufficient. Storage limitations of this type can easily be overcome by modifying the interface circuit in such a way that it expands the I/O capability of the User Port. A suitable modification is shown in figure 4. It is based on the use of eight SN74LSI75 quad storage latches (Dtype flip-flops) and a SN74LS138 3-to-8 decoder/demultiplexer chip. The latter is used to generate latch enable signals. User Port utilisation is as follows: PA0, PA! and PA2 are used as a simple 3-bit address bus that specifies which latch (and hence, projector) is to be enabled: each latch services two projectors. Pins PA4, PA5, PA6 and PA7 act as a simple four-bit data bus whose contents are used to update the
enabled latch. The CS2 line is used to produce a clock pulse which causes the selected latch to be updated on its low to high transition.

Using this circuit up to sixteen projectors can now be controlled thereby providing a capacity for as many as 1280 slides. The control program for such an arrangement is shown in figure 3B. The user enters the projector number (in the range It through 16) and, as before, the required direction of magazine rotation - F or B . Notice that the interface arrangement shown in Figure 4 provides the ability to project up to sixteen images simultaneously. By means of more sophisticated programming techniques it becomes feasible to produce a variety of interesting graphic effects by super-imposing several different images. For example, it would be possible to build up complex pictures from much simpler onies or decompose compound scenes into their component parts. Techniques such as this offer valuable toolsforcomputer based training and aiding applications.

Random Projection

Sequential presentation of images is a useful techinque when the information to be displayed is highly ordered and no departures from a linear access scheme are

Fig 4. Hardware Interface for Controlling 16 Projectors

TECHNICAL FEATURE

Figure 3 Control Programs for Sequential Slide Projectors
(A) Single Projector

100 POKE 59459,3
110 POKE 59471,0
120 PRINT " $\square 1!$ SEQUENTIAL SLIDE PROJECTION"
130 PRINT " $11 \rightarrow$ F ADVANCES MAGAZINE"
140 PRINT " 1 —B SHOWS PREVIOUS SLIDE"
150 REM GET USER'S REQUIREMENT
160 GET A $\$$: IF A $\$="$ " THEN 160
170 IF $A \$=" F "$ OR A $\$=$ "B" THEN 190
180 GOTO 160
190 IF A\$ = "F" THEN GOSUB 300
200 IF A\$ = "B" THEN GOSUB 400
210 GOSUB 160
300 REM MOVE MAGAZINE FORWARD
$310 \mathrm{X}=\mathrm{PEEK}$ (59471)
$320 \mathrm{X}=\mathrm{XOR}$ 1
330 POKE 59471,X
$340 \mathrm{~K}=\mathrm{TI}$
350 IF $\mathrm{TI}<\mathrm{K}+20$ THEN 350
$360 \mathrm{X}=\mathrm{X}$ AND NOT 1
370 POKE 59471، X
380 RETURN
400 REM MOVE MAGAZINE BACKWARD
$410 X=$ PEEK (59471)
$420 \mathrm{X}=\mathrm{X}$ OR 2
430 POKE 59471,X
$440 \mathrm{~K}=\mathrm{TI}$
$450 \mathrm{IF} \mathrm{Tl}<\mathrm{K}+20$ THEN 450
$460 \mathrm{X}=\mathrm{X}$ AND NOT 2
470 POKE 59471.X
480 RETURN
required. However, there are many situations where this mode of usage is not applicable. In many real-time image retrieval systems, for example, it is never possible to anticipate (with any certainty) the order in which images will need to be displayed. As an example of this, consider the use of image projection as a means of augmenting the learning processesinvolved in computer based training systems.

Suppose someone is to be trained in the use of microelectronics. Typically, under computer control a slide projector might be used to show a trainee some slides containing pictures of electronic components and circuit diagrams in which these are used. Then, the computer would attempt to assess the trainee's understanding of the material by requesting the answer to a multiple choice question that it displays on its VDU screen. Assume that this hassix single valued response options - say A, B, C, D, E and F. Once the student has responded to the question the computer may be required to execute the following type of decision logic:

> If reply is A then show slide N;
> If reply is E or C or B then show slide K; If reply is D or F then show slide P;
> If HELP requested thengo to HEL.PER: Go to INV ALID-REPLY routine;

Obviously, to implement this kind of image presentation strategy in an effective way a random access slide projector is a necessary pre-requisite.

Commercial projectors of this type, such as the Kodak CAROUSELS-RA2000, are usually fitted with numeric keypads. These enable their user to "key-in" the decimal number of the slide that is to be retrieved and displayed. This number represents the actual sequential position of the slide in the storage magazine. Once it has been keyedin the projector rapidly retrieves the slide
and projects it. The time to retrieve an image is less than five seconds - no matter where it resides within the magazine. Thus, with this type of projection equipment any sequence of slides can be rapidly displayed without the need to physically re-position them - as would be necessary inthe case of a sequential projector. Unfortunately, however, the design and construction of computer interfaces for random access projectors is more difficult since they place a greater demand on the I / O port of the host microcomputer - as will be described below.

The way in which the remote decimal keypad controller of the Kodak RA projector operates is fairly easy to understand. It may be likened to two banks of switches - Λ and B. Bank A, consisting of nine switches, selects the "tens digit" of the slide number, bank B, containing ten switches, then selects the "units digit". The slide to be retrieved can now be specified by closing just two switches, one in bank A (range 0 to 8) and one in bank B (range 0 to 9). This logic is fairly easy to emulate through the use of two SN74145 BCD-toDecimal decoder chips as shown in Figure $\mathbf{5 A}$. The relay circuits used are similar to

(B) Software for Interface Control

```
10 POKE 59459,255
    20 INPUT "DO++++iENTER SLIDE NUMBER"; NS
    30 IF NS>80 THEN 90
    40 IF NS<O THEN 90
    50 K=[NT(NS/10)*16+NS-INT(NS/10)*10
    60 POKE 59471,K
    70 GOTO 20
    90 PriNT "+tinvalio slide numerr selected"
    100 PRINT "TRY AGAIN"
    105 <2=TI
    106 IF TI<K2+120 THEN 106
    190 GOTO 20
```


TECHNICAL FEATURE

those employed in the case of the sequential projector shown in Figure 2. Notice that each SN74145 IC requires four input lines. Together they require the use of all eight I/O lines of the microcomputer output port. This is a severe limitation if other devices also need to use this for $1 / 0$. However, as will be described later, it is a fairly easy matter to overcome this limitation.

A simple control program to operate the random access slide projector is shown in Figure 5B. Its logic is quite straightforward. The slide number typed in by the user is transformed from decimal to two BCD digits. The resultant bit pattern is then sent out via the Pet User Port to the pair of decoder chips housed in the interface. These then activate appropriate relay circuits which nowemulate the effect of the normal remote numeric keypad controller. The projector retrieves the specified image and displays it.

A more sophisticated application of the projector is embodied in the program listed in Figure 6. This software enables it to be programmed to show any sequence of slides over and over again - as many times as its user requires. The time for which any particular slide image is displayed can be set to a default value or uniquely specified. This system has been used for a variety of automated demonstrations and advertising applications.

Should the need arise to control a significant number of random access projectors then, because of the limitation mentioned above, analternative addressing scheme needs to be found. The User Port cannot be used because this is dedicated to the transfer of switch selection data. The microcomputer address bus provides one solution to this problem. By equippingeach
projector with an address decoder/latch enable circuit it becomes possible to memory map the projectors onto the address space of the computer. Then, the User Port can be used as a common data bus from which the data is strobed by the projector whose identification is sent over the address bus. If the User Port is not available (because it is being employed to control other devices) the PET's bidirectional data bus could be used to transmit the slide selection data. This arrangement is shown schematically in Figure 7. When using this approach to projector control, the BASIC statement

FIG 3 (B) Multiple Projectors

100 REM CONTROL OF MULTIPLE SLIDE PROJECTORS
110 REM ****************************
120 REM
130 GOSUB 390 : REM INITIALISE SYSTEM
140 INPUT " \square ! 1 PROJECTOR NUMBER";N
150 IF $\mathrm{N}<1$ ORN >16 THEN 140
160 INPUT "! 1 FORWARD OR BACKWARD": D\$
170 IF D $\$=$ " F " OR $D \$=$ " B " THEN 200
180 PRINT"11!";
190 POKE 32989.32: G0T0 160
200 REM CALCULATE WHICH LATCH TO USE
210 L-INT ((N-1)/2)
220 REM NOW CALCULATE DATA VALUE
230 REM ASSUME FORWARD MOTION
$240 \mathrm{~V}=1$
250 IF $0 \$=$ " B " THEN $V=2$
260 REM SEE IF EVEN OR ODD PROJECTOR NUMBER
270 REM ASSUME ODD TO START
$280 \mathrm{SF}=1$
290 IF $\mathrm{N}=\mathrm{INT}(\mathrm{N} / 2)^{*} 2$ THEN SF $=4$
300 REM CALCULATE VALUE OF DATA WORD

POKE X,Y could be used to request that slide Y be displayed on the projector whose address is X . Memory mapping of projectors onto unused ROM addresses within the PET can thus be used to provide sufficient expansion capability to support any reasonable number of slide projectors without placing any demands on the User Port. An analogous strategy could be used to control the sequential projectors described in the previous section.

CONTINUED ON
 PAGE 34

$310 \mathrm{~V}=\mathrm{V} * \mathrm{SF}$
320 REM SEND PULSE TO PROJECTOR
330 GOSUB 490
$340 \mathrm{~K}=\mathrm{TI}$
350 IF TI $<K+20$ THEN 350
$360 \mathrm{~V}=0$
370 GOSUB 490
380 GOTO 140
390 REM ****INITIALISE SYSTEM
400 POKE 59459,255
$410 X=$ PEEK (59468)
$420 \mathrm{X}=\mathrm{X}$ OR 128 OR 64 OR 32
430 POKE 59468,X
440 FORL-0T0 7
$450 \mathrm{~V}=0$: REM CLEAR LATCHES
460 GOSUB 490
470 NEXT I
480 RETURN
490 REM ***UPDATE OUTPUT LATCH
$500 \mathrm{D}=\mathrm{V} * 16+\mathrm{L}$
510 POKE 59471,D
520 POKE 59468،(PEEK(59468) AND NOT 32)
530 POKE 59468،(PEEK(59468) OR 32)
540 RETURN

Fig 7. Memory Mapped Random Access Slide Projector

After eventually deciding to "take the lid off" my Video Genie EG 3003, I then did the standard "mods" of putting in an audio amp and changing the shift key for a clear and tab key. As I use Microsoff's Editor Assembler (Tape Version) I find the tab key essential when running this programme. The only way of saving an object code was on tape, this works fine but was quite laborious when loading a programme I have that prints data off the screen to my Teletype (110 boards).
"How nice it would be to have this programme in Eprom," I thought. Lookingat the C.P.U. board there just happens to be an expansion area for a 24 pin device. This device is addressed at $3000-37 \mathrm{FFH}$ not used by my Video Genie at present except for a few addresses for a disc-based system.

Fitting a 24 pin chip base, a few track cuts, a resistor and toggle switch will allow 2 K of Eprom at 3000 h to be enabled when required.

The only drawback with this system is that one has to be able to programme Eprom's. As I own a modified Softy, I can programme single rail Eprom's with ease. I think the Softy kit is well worth the expense of using machine code with the system I use on the Video Genie.

VIEW FROM FOIL SIDE

Using the Eprom

As I mentioned earlier, I have a utility programme for printing the contents off the screen. Lets suppose the programme started at 3000 H , all you would have to do to run it is type "system hit newline, then type /12288 (3000 H in decimal) hit newline. Don't forget to enable the device first by throwing the toggle switch to the enable position (B). The switch (SI) is best left in (A) position on switch on.

VIDEO GENIE WITH 2K EPROM

by Jay Lazzari

MOUNT S1 BY DRILLING HOLE IN THE FRONT LOWER HALF OF THE VIDEO GENIE CASE.
S1 IS A SPDT SWITCH
RX IS A $4 K 71 / 2$ WATT

VIEW FROM COMPONENT SIDE

WHY PAY MORE

TRANSFORMER ENCAPSULATION

NOW FANTASTIC VALUE
FOR BOTH HOME AND BUSINESS

MZ-80K computer with BASIC \& applications cassettes \& manual 20 K R AMMZ-80K

48 K RAM
K210
K300
K 310
K403
S131
S511
S512

FD Twin Floppy Disk Unit	$£ 540$
I/05 slot expansion interface	$£ 80$
FI/O Floppy disk interface	$£ 45$
P3 80 char dot matix printer	$£ 360$
PASCAL cassette \& manual	$£ 40$
BASIC interpreter (disk) \& manual	$£ 20$
BASIC compiler (disk) \& manual	$£ 40$

WIDE RANGE OF PARTS \& LABOUR GUARANTEED SHARP PRODUCTS AVAILABLE - PLEASE PHONE!

PLEASE ADD VAT TO ALL PRICES
Delivery extra, Insure your computer and software through us. Phone now
All major credit cards accepted
01-6434290

ZX81 16k software

All our software comes with full instructions and is SAVEd and ready to RUN, no need to spend hours laboriously typing in from books.

```
PACK 18/1 includes all of
AIR TRAFFIC CONTROL:Animated radar screen of busy
alrport shown, you must bring planes into land:
alrport shown, you must bring planes info land; friends'
NVADERS SELF PLAY; PHONEBOOK keep fri
and retatives numbers on cassette: OATE 81-
computer dating p
PACK 16/ 2 includes all of:
ADVENTURE ATLANTIC: You may become very rich or
vou may be maroontd forever; BREAKOUT: SQUASH
PRACTICE; LANGUAGE TRANSLATOR translates any
European language to anv other; COMPUTAPRINT -
wae this program to predict results of horse races,
football pools, etc
ALL ONLYE4.S6
PACK \(16 / 3\) includes all of:
INDI 500: video roadracer; DRAUGHTS; Computer Chequers; BATTLESHIPS - nautical wartare on your own computer.
MASTERMIND - Brain Teaser, see if you cen beat a microolectronic mind.
ALL DNLY £4.96
The breakthrouglr you'ya waited for:
PROGRAM THE \(2 X 81\) IN ENGLISHIII
With GAMAL 81 you can now. Write adventure programs in hours not werks and with GAMAL 81 you'll havo evary advanture you'll ever want for the prica of one Comes on cessette with instruction book, \(\mathbf{5 7 . 9 6}\)
```


CONTROL TECHNOLOGY PERSONAL

COMPUTER SCIENCE

ZX - 81

Cassette 11/2

A super value cassatte of 16 K and 1 K software written in Machine Code and Basic.
Includes:
React, Invaders, Phantom Aliens, Maze of Death Planetlander, I Ching, Hengman, Invaders, Lasar Base, rectangle plus more ALL ONLY E4.95

Tapebook 50, Version 3

50 programs tor the IKRAM ZX8 ${ }^{4}$
Latest version includes
SQUASH, BREAKOUT, COLUMBIA, SPLAT
INTEGRATION, CREDIT CARD CALCULATOR, BANK
A/C. VATCHECK. TANK BATTLE, TORPEDO,
HEXLOADER, BINARV CONVERTER, AND LOTS, LOTS
MORE
Still amazing value at $\mathbf{6 6}$. $\$ 6$ the lot.

PACK $16 / 1+16 / 2+16 / 3$
(any two only f.5.95)
ALL THREE ONLY
f6.95
TAPEBOOK $50.3+$ CASSETTE $11 / 2$
BOTH ONLY
C9.95

BOTH OFFERS ARE ONLY $\mathbf{f 1 3 . 9 6}$
SPECIAL OFFER
TO ALL ZXB1 OWNERS

All prices include VAT end portage end packing

[^2]39 Gloucester Road, Gee Cross,
Hyde, Choshire SK14 5JG
061-368 7558

MEMORY AN INSIDE JOB

When I first bought my TRS-80, 16K seemed to be a very large amount of memory. At that time, 16 K on the TRS-80 cost a lot less than 8 K on anything else, and it was then, and is even now, among the larger amount of free memory offered in a single box. For a lot of purposes, 16 K was more than adequate, and coupled later with a Stringy-Floppy for mass storage, and a serial printer driven from the cassette port, 16 K remained perfectly adequate for all my needs for a couple of years. Things only changed when I started to use the excellent Word Processing routine, the Electric Pencil, to a greater extent. Using 16 K along with Electric Pencil leaves room for only about 2000 words of text, which is less than half the length of the average book chapter. There was, of course, no objection to recording the text (using cassette) in sections, but printing it was a nuisance, requiring the printer to be stopped at the right places so that a new load of text could be loaded in without spoiling the layout of a page.

Mysterious Reboots

At first, none of this tempted me to expand, because the "official" Tandy expansion involved buying another box which would cost as much as the computer did, and which had, like a well-known pill, some undesirable side effects, like losing your program when the RESET button was pressed. Friends who had expanded in this way also complained that they got mysterious reboots, returning to the switch-on procedure, along with loss of program. This was always attributed to the use of edge connectors which were soldercoated rather than gold-plated. My 16K machine was quite incredibly reliable, including the cassette operations, so that I resisted the temptation to expand.

This year, however, with five books in the form of cassette tape to print, and not so
much time to spare, the possibility of expansion again loomed up. By this time, the expansion interfaces were no longer available, because the Model 1 had been out of production in the U.S.A. for a year. This wasn't such a great worry, because I had ordered a new BBCMicrocomputer by that time anyway, but I still needed the TRS-80 to print out the material on cassette, as it might take me some time to devise a program to allow the BBC Micro to read and use Electric Pencil tapes. A series of adverts in the U.S. magazines,
up the manufacturers, Holmes Engineering of Salt Lake City, Utah, and ordered the 48 K unit.

By September, there was no trace of delivery, but another phone call brought me reassurance that the unit was on its ways. In November, with still no sign that anything was happening, 1 cancelled by letter, only to find a few days later that the unit was waiting for me in the local Post Office, together with a bill for $£ 11.56$ in Customs and V.A.T. There didn't seem much point in returning it by then!

Fig I The memory board with 48K of memory on board
however, drew my attention to the possibility of internal expansion boards.

Internal expansion is an attractive proposition. It means using a board packed with 4116 RAM, plus one address decoding chip, sitting on the sockets of the original RAM. I knew that Video Genie owners had discovered that they could expand the Genie to 32 K simply by "piggybacking" RAM chips on top of the original ones, and the idea of using a betterengineered version appealed to me. Dynamic RAM like the 4116 does not take much operating power, and the unit was neat enough to fit inside the keyboard, eliminating the problems of these dodgy edge connectors. At 80 dollars for an expansion up to 48 K , I decided that it was a risk I had to try. This was in late July. I rang

The unit is well constructed, and well thought out. Installation sounds easy, but requires some nerve and a certain amount of brute force. To start with, the TRS-80 keyboard has to be opened up. This invalidates the guarantee, buttheguarantee is usually up by the time you take it out of the shop anyhow, and mine was well and truly up. My TRS-80 was purchased at a time when it was an almost unknown computer here, and it was a Compshop special, having started life as a 4 K unit, and fitted with 16 K over here. This meant that the seals were broken anyhow, and since l had earlier fitted the lower-case modification for the Electric Pencil, I felt that there wasn't much point in being queasy now.

Lumps of Solder

The installation of the additional RAM means removing the 84116 chips from the keyboard, and placing them in labelled positions in the new boards, along with another $32 \mathrm{~K}(16 \times 4116)$. I found some of the original 4116's mounted at crazy angles in their sockets, because of lumps of solder on the pins, which made me wonder where they had come from. I removed the solder, and plugged them into the new board. The instructions then call for four flying leads to be clipped to IC pins (one to a resistor) to give the decoding signals, and then the memory board, which is fitted with pins underneath, is plugged into the now-empty RAM sockets of the TRS-80.

Putting it back

Quite a lot of force is needed to push the pins of the memory board into the empty RAM sockets, and it isn't easy to support the main TRS-80 board so that this force can be exerted without damaging something. My first attempts were a disaster. The computer came on normally, indicating the presence of the full 48 K of memory, but refused to run any programs. A memory test did not report any faulty memory, but dropped out with faults in non-existing lines, indicating that there was an address fault. Most programs simply landed back to the MEMORY SIZE? switch-on question when RUN.

Putting it all back as it had been did not cure matters, and a very close inspection of the main board revealed two possible causes. One was a capacitor lead which was perilously close to an address line, and might have been touching, the other was in the form of four sticky foam pads which were supplied with the board to help hold the clip leads in place. All of these pads were stuck across tracks on the board, and therefore a cause of potential trouble. Removing the pads and easing up the capacitor lead, a victim of the board insertion procedure, restored normal operation as far as I could tell.

1 installed the board again, this time soldering the four flying leads in place

Fis 2 The board in place on the TRS80 main board.
instead of clipping them, and this time was rewarded with what looked like normal operation, despite problems caused by earlier modifications - the lower-case attachment wires had pulled some of the track off the board, causing problems with the video display. With this sorted out, a memory check program ran through all 48 K with no faults reported, and no hangups. I began to feel that perhaps it had been worth while.

My rejoicing was premature, however. The Electric Pencil soon found some new faults when I tried to use it. The program loaded perfectly, but then froze up when I tried to use it. and none of the keys had any action. After reloading and typing a thousand words, I lost the lot when it abruptly returned to its MEMORY SIZE? switch-on procedure. It looked as if I had exchanged a reliable 16 K unit for a very unreliable 48 K one.

I started trying remedies. The first thought was that that the powersupply was overloaded. The test was to take 32 K of memory out, and try again. Same problem - totally unreliable. Next obvious step was to take the memory board out and try again. This seemed to stop the problems, and l got a mornings work done, then sent the memory board back.

Unfortunately, my troubles were not over. The TRS-80 became more and more unreliable, and every attempt 1 made to cure it made it worse. I ended up selling it for scrap.

So there it is. A memory of 48 K for only $£ 50$ or so looks very attractive, but you have to be prepared for problems. Lets face it, if someone like me who has lived with the smell of hot solder for 30 years can be caught out, then you too might just wreck a good computer as well. In particular, you must be prepared to handle the fragile TRS-80 board with very great care, and to inspect everything after installing the
board. While I was waiting for delivery of the expansion board from the U.S., several firms in the U.K. started to advertise dynamic RAM expansion boards, and if I had not already had the board on order, I would have been very tempted to use a locally-made product. If you have problems, its always more comforting to know that the manufacturer is only a few hundred miles away rather than a few thousand.

Traumatic experience

Scrapping a computer has been a traumatic experience, and it has convinced me that a computer design which is arranged to make expansion easy, with the minimum of handling of the boards, will always be a better buy tha none which needs modification. This approach is reflected in all the newer designs, like the TRS- 80 Model III, and the BBC Microcomputer. It is also the reason why so many educational authorities have plumped for the RML 380-Z - its ability to expand by simply plugging in more boards makes up for the high initial price, and the price of the R ML380 Z with 48 K and twin double-sided discs compares very famourably with the price of the Model Ill TRS-80. Another point in favour of the 380 Z is that all connections from the main computer are made through robust Cannon-type plugs and sockets, rather than through fragileedge connectors with unreliable contacts.

As a tailpiece, I have just seen the U.S. expansion board for the TRS-80 advertised from some dealers in the U.K., at only twice the price I paid. Perhaps at that price, they can fit the board and guarantee their workmanship for a year. I, for one, won't look at "add-ons" unless I can have that sort of guarantee that 1 will have a reliable computer afterwards.

COMPUTER AIDED DESIGN:

This is the first part in a nine part series on computer-aided-design.
We hope that during the next few months readers whofollow the series will become well equipped to design their own electronic circuitsusing a personal computer. The computer used by the author for the series is the ZX81 with the 16 K memory extension. The whole series should comprise of the following parts subject to changes later:

1. Introduction of CAD.
2. Assembly by matrices.
3. From two terminal impedances to two part matrices. (Algorithms).
4. Balanced bridged, and twin tee filters. (Algorithms).
5. Transformers and Lines. (Algorithms).
6. Overall logic of control program. (Including the program itself).
7. Inputting the individual component values. (Including sub-routine program).
8. Outputting overall results and debugging tests. (Including programs).
9. Operating instructions, Interpretation of results, etc.

There will be some complex arithmetic in part 3, equivalent circuits and matrix type conversions in part 4 and some transmission problems in part 5.
Details of mathematical derivations will be included separately for those readerswhose maths does not stop at 6th form, but detailed mathematical discussions are avoided in the text.
While this is the most ambitious project we hve undertaken for the ZX8I it should provide this low cost machine with a new type of status and it will rapidly be regarded as a quite serious design tool.
While some of the maths is quite heavylater in the series we feel it would not be right to water this important feature down and indeed talk down to readers - best of luck Ed.

It is hoped that this article may be the first of a series dealing with the present continuing development of an ambitious CAD suite of programs on a ZX81 with 16 K and printer. In the future it is hoped to develop (or obtain from Sinclair if they make it available) a second 16 K extension to increase the scope of the present project; the addressing is already available within the machine, and the type of extension connector used to add the printer should serve also to add a further memory bank. but, of course a second power unit will be necessary to drive it.

The reader is warned that the series of programs to be described are writtenforthe ZX81; the Basic of this machine has a
number of features non-standard on any other, but the coding of the Basic and of the keyboard make it much faster to key long programs, and the editing facilities are excellent and make development and debugging easy.

With a long program such as the final suite under de velopment, it is impossible to key and debug the whole thing, even if a day exceeding 14 hours could be worked with mind still alert, a 'glitch' on the mains, lasting only a few milli-seconds, suffices to remove several hours of work from the RAM. Sections of the program are keyed, and when more than a hundred lines are in, the whole is run onto tape. At a later time, it can be put back in a few minutes, edited to remove problems, a further section added, and the whole then recorded again. During development, a single C 12 cassette has been used, recording first on one side, and then on the other, switching backwards and forwards so that if for any reason (no single instance has yet arisen), the new recording proves faulty and fails to load, only the most recent additions are lost, and the original is still available on the other track.

The present project is written in sections, each one terminated in a 'RETURN' so that only those necessary need be used, economising in memory and easing considerably the problems of development and de-bugging. Given a design of circuit and values, it is simple on a computer to evaluate the exact performance, but it is virtually impossible to start from a desired characteristic and calculate the exact values of practicable components to produce it. Most existing designs can only be calculated from scratch for 'ideal' components with zero dissipation, and the existant 'strays' and losses give a considerable departure from the theoretical values in the neighbourhood of the many resonances usually involved.

It is only the immense amount of work which can be accomplished in a small time that enables an alternative method to be used in these cases, when a computer is employed. The method involves 'iteration', the zero-dissipation designs already published are used to feed initial values, along with practical values of dissipation, into the
machine, and record on a printer the exact characteristic resulting; the program is so written that without disturbing the main values, a small change may be made where experience shows an improvement may be expected, and the resulting characteristic run again. This method of slowly adjusting one value at a time and noting the results, will eventually lead to a set of optimum values and a reliable forecast of performance.

For anyone not familiar with the method, the following short and useless program can be run and the efficacy of the method noted step-by-step. It is a very inefficient method of calculating a squareroot, and is only presented to give a visual example of the principal of iteration.

```
10. PRINT "input X ' 1"
20. INPUT X
30. LETW=X/2
40. LET Y = W**2
50. PRINT W; "= SQR"; Y, X
60. STOP
70. LET W=W+(X-Y)/2
80. GOTO 40
```

Initiation by keying 'RUN 10' will give an invitation to input a value greater than unity, and then wait for the value to be entered. Entering it, and keyingNEWLINE will give a first estimate of the square root of the number keyed, together with the square of the estimate and the number keyed. Keying CONT and pressing NEWLINE will then give an improved estimate. Continuing keying will givea steadily closer approach which alternates from side to side of the exact value. The process may be continued until the difference displayed on the screen is as close as may be desired.

This first article is being written so that the editor may decide whether he is interested in continuing the series, so that instead of spending space on discussion of the method adopted to evaluate complicated circuit performance, and which may not come to publication, a useful section of the suite will be given, employing no very original methods, but being a series of short sub-routines, which may prove useful in
any attempt to calculate circuit performance, since all such will employ complex arithmetic which is performed by this program.

Most elementary manuals recommend using the REM statement prolifically to enable the logic of the program to be followed readily, but this entails a very wasteful use of expensive memory; the form presented here dispenses with this luxury, and annotates the printed version of the programme, which is the place where one looks for enlightenment, and wherethe explanations can be phrased in a wider symbology than is a vailable on the normal home computer. There is nothing original in this program, but a few points are worth noting for the help of those new to programming.

The values of the 'complex' expressions are contained in two arrays, A for the real component and B for the imaginary one. For ease of menomonics when writing programs which utilise these routines, the entry indices are constant as C for the first expression, and D for the second; E is invariably used for the one output. This principle is altered in $1470,1500 \& 1520$ to allow a free transfer between them when obtaining the square root; this economises in memory space in the calling program.

White the general case is easily covered, there may be times when either an error in computation, or else unique combinations of values, will cause the computor to 'go mad', and these must have a guard to prevent it happening. Line 1280 contains a typical example; the variable I occurs as a divisor, and should the machine be presented with a zero value, it is advisableto draw immediate attention to the fact and enable the locality to beexamined. Another example occurs in line 1471 where for a quantity purely imaginary, the normal ratio used for calculating the angle would lead to division by zero, and give a result equal to infinity which is the true value of the tangent, the computer is not equipped to deal with this, and the way around the problem used there must be adopted.

Another feature of the Basic can also set a trap for the unwary. The square of a negative number is always positive, but the computer, in common with most pocket calculators cannot deal with this situation, and the function ABS must be used for quantities squared as is donefor example in line 1280.

The only case in this suite of routines where the algebraic values are not used throughout occurs in 1250 . Here a multidimensional array M is used. Infuture programs to be covered this array will be used more frequently than any other, but it is only introduced in this one case because in a very frequently called use the inclusion

T.V. GAME CARTRIDGES

We specialise in the whole range of T.V. gemes and sell cartridges for the fothowing games: ATARI \star MATIEL \star ACETRONC \star PHILIPS \star OATABASE \star ROWTAON \star NTERTON \star TELENG
Let us know if you own any of these games and we will let you heve details of the range of cartridgas available.
Attention INTERTON \& ACETRONIC owners we have over 75 essorted used cartridgas in stock all with 1 vear guarantee - SPECIAL OFFER f8.95 each We elso have a number of eacondhend games and cartridiee.

ELECTRONIC CHESS

 Liquid crystal battery chess NOW F5 OFF computer with 100.200 hrsbattery life and two levels of play. 24.85
SHLE PRICE
 GRADUATE CHESS
 electronic chass set with integral
chess board The ideal portable
chess sel-see illustration.
INC VAT
FIDELITY MINI-SENSORY CHESS COMPUTER
The very first chess computer of its price 10 offer a portable computer with inlegrel sansory board. planned for 1982 for advanced chess, popular openings, greatest mester games. or aughts and
revers.
STANDARD CHESS MODULE WAS 554.50 NOW 549.95 VAT
Silice Shap are one of the countris lamding specieltits in Chest Computers and now stock arange of more then 20 Chess Computefr, including Challonger $7 / 10 / v o l c e$, Sonsory 8 and Somiory Voice, Dif
Sysrom 3 , Morpity, Great Game Machine, Volce Champion, and the now Scicys Mork V.

Electionc (4) 1

TELLIVISION
THE ULTIMATE T.V. GAME
 OUR PRICE $£ 156.48$ + vat

6 NEW CARTRIDGES JUST RELEASED: ASTROSMASH * SNAFU * BOWLING SPACE ARMADA * BOXING TAIPLE ACTION All 19 current cartridges + the six new ones above now retail at $£ 19.95$ - Silica special offer price \& 17.95 linc V/T

The Mattel Intellivision is the most advanced T.V. game in the world with a range of over 25 hifferent cartridges all at our special offer price of 817.95 . This game uses a 16 -bit vicroprocessor giving 16 colours and three-part harmony sound. The picture quatity is incredible with 3D effects and realistic animation. An add on keyboard will be available in the Spring 1982 to onvert the Mattel into a full home computer with $16 K$ RAM which will be fuliy expandable and argrammable in Microsoft Basic. Other accessories will be added tater in the year. The normal rrice of the intellivision + free
nc. VAT saving you $\mathbf{5 5 0 . 0 0}$.

MATTEL OWNERS CLUS - Why not join our Mattel Owners Club and recive our -egular newsletters containing details of all the latest cartridge releases. Telephone us mith your name and addresses and we will add your name to our computer mailing list FREE 16 PAGE CARTRIDEE CATALORUE - If you are interosted in owning a Hattel, we now have available a 16 page catalogue describing the latest six cartridges to be released, as well as a new Matel colour leaflet with brief descriptions of all 25

EARTHINUVADERS
 These invaders ore a breed el creature hittierto onknown to man. Thay These invaders ore a breed ef creature hitherto onknown io man. Thay cancol be killed by traditionei mathods - they must bo buriad. The bathe is conducted in a mare where squeds of eliens chose home iroops. Tho enly R.RP f26.96 NOW $£ 18.95$

SPACE INVADERS

Based on one of tha most populer arcade gemes. Space lnvader 'ux pscke in fots of
action with multi-athaped. britiant LED vessala. inctudina attack ships, bombs, action with multi-shaped. britliant LED vessala, including attack ships, bombs. dofenders, mis sile rockets ond a beam farce cannon, plus exciting efectronic sound You manosuve the missile rockets - avoiding alien bembs - snd destroy the invader ferce as quickly a you can. Progressivo degree of oifficulty. Includes automatic digital scoring. For agos 6 to adult.
R.R.p. $\mathbf{2 4 . 9 5}$ NOW $£ 16.95$ inc. vat

AFFORDABLE ANSWER
"Sarry derling. I will be late home - Love John" The Call Jotter I brings the affordable answer at the amazing price of $f 69$ (or f 99 for the Call Jotter 2 with built-in remote recall facilities). These amazing telephone answering machines are Post Office certified and guaranteed for one year. They make a thoughtful gift for
home or business use.

RADOFAI TELETEXT

 cirevirion informi,
splures
inIS NEW MODEL
TNIS NEW MODE
INCORPORATES
ADD-ON ADAPTOR

SALE PRICE £124

CALLEAS WELCOME

 7 divs We writ gry you a tuil relund

OMMPE IIt IVE Paices We .ue neved hnow.nghy under soki

ANSE SCHEME
SILICA SHOP LIMITED

UPDATE

$$
\begin{aligned}
& \text { MICRO-COMPUTER } \\
& \text { UPDATE }
\end{aligned}
$$

Our tables this month give a comprehensive update on what's available on the micro scene.

Note in particular the British-made offerings; these have increased substantially over the past 6 months with prices somewhat cheaper than the imported models for very comparable specification.

Perhaps we as a nation are not going to get wiped out of the micro-computer market quite so easily as some of the prophets of gloom would have us believe.

Prices however should be treated with some caution since certain essential pieces of software, such as the operating system, are often charged for extra. The Vector Graphic for instance comes with approximately $£ 700$ of software as standard, the Xerox 820 , non.

The Japanese are now very much in evidence with Sharp in particular about to overtake Apple for third position in the U.K. Certainly the Americans must be very worried especially at the middle range price band of $£ 500-£ 1,500$.

One nice feature arising as a result of the British and Japanese presure on the American top dogs is that British comprehensive guarantees of 1 year, rather than the American 90 day limited warranty is becoming standard.
The Japanese competition in particular should also result in much more standard software being offered with each system rather than charging extra for it as at present.

In addition to the information contained in the tables below there are other considerations you should take into account before deciding on a particular computer.

Obviously the points to note, will differ in priority beween a business or scientific application and a home application. We have therefore listed them separately as follows:-

HOME USE

Is the system big enough for your present needs and will you be able to expand it to meet future plans? In particularlook for the ability to expand memory and the availability of standard ports (RS232C or Centronics).
What period is the warranty? I year is now standard.

The magazines are full of interesting software programs sent in by readers. Can their Basic programs be easily adapted to run on your machine? Most dialects of Basic are easy to convert. But Tiny Basic is not usually downward compatible from Extended Basic. Others such as Acorn Basic can prove difficult.

What standard off the shelf programs exist? Games, Teaching, WP etc.

Is the system complete? Or do you have to buy connecting leads, power supplies, magnetic storage devices, output interfaces etc at extra cost.

If so how much do they come to? An RS232C interface can cost $£ 70$ for example.

Does the supplier offer a 'Help' service. Essential for a first time user. If you are contemplating a kit this should be your priority question.

Will it be possible to use a colour monitor.

THE PROFESSIONAL USER

How long has the supplier been in the business?

Is there a reference site where you cansee your particular application being used.

What are the future expansion capabilities? With particular reference to disc storage, multi-user, plug-in board enhancements.

Is the system CP / M based? You may be
dependent upon one supplier for your software if it is not.

Is the internal architecture based on the S-100 standard or some other common standard such as IEEE-448 or SS50? This is particularly important if it is envisaged that A-D converters, Signal processors, added memory boards, clocks etc could be needed in the future.

How many external ports, RS-232C or Centronics do you get with the system, and can you have extra at a later date? Y ou may wish to add an extra disc drive, modems or graphics plotter to your system, or run two printers a fast dot matrix and a letter quality daisy wheel.

Is the system capable of being expanded to multi-user operation? Many now are, but insist on a demonstration with at least three terminals, as some slow down by a significant amount.

If multi-user operation is a consideration the following question should be asked.
\star Is multi tasking possible?
\star Does the OS provide record and/or file locking?
\star What about file security? Coding etc.
\star What is the maximum number of terminals?
\star How far can they be spaced apart?
\star Is the slow down in processing speed still acceptable with the max number of terminals.
Where is the system manufactured?
What is the guarantee period? Many are still only 90 days.

Is there a 24 hour on-site maintenance contract available for your area?

How much does it cost? Betwen 10 and 12% of system cost is typical.

Does the supplier have a software support team available to back up your application? This is an important consideration for most business users.

What kind of printers can I have? You will want daisy wheel for word processing applications and dot matrix for draft and label printing.

British Built Micro-computers

Low Cost Imported Models.

Origin		Does the Price						
	Name	Mod. No.	PRICE inc.vat (pounds)	RAM size (000)	CPU type	include		
						VDU	oolour	tape
						?	display	$?$
USA	Apple	II	695	16	6502	no	yes	no
FE	Atari	400	345	16	6502	no	yes	no
FE	Atari	800	645	16	6502	no	yes	no
HK	APF	IM-1	400	8	6502	no	yes	yes
FE	Cormdr	VIC20	200	8	6502	no	yes	no
Belg	DataApp.	Dai	684	48	8080	no	yes	no
USA	Exidy	Sorcrer	r 458	16	280	no	no	no
HK	Genie	EG 3000	330	16	280	no	extra	yes
USA	Pet	I	529	16	6502	yes	no	no
Hol	Pearcom	Pear II	975	32	6502	yes	yes	no
Jap	Sharp	MZ 80K	454	20	280	yes	no	yes
Jap	Sharp	M2 80B	1259	64	280	yes	yes	yes
USA	Tandy	TRS80-I	I 400	4	280	yes	no	yes
USA	Tandy	" III	I 573	4	280	yes	no	yes

Can I inspect the manuals? Sloppy documentation, sloppy outfit.

What about staff training?
What other applications packages are available which could be used in my company? e.g. WP, DBMS, Financial modelling etc.

What is the capacity of the dise storage system you are being offered? Make sure it is more than sufficient for your present requirement.
Is it a dual or single drive? For most business applications a dual drive is the minimum recommended.

Is a hard disc option available? This is fast becoming the most economical way to add large amounts of memory.

What is the size of the main core memory? 64 K is now the norm.

What is the user area available? The operating system always takes up some space and the more sophisticated the OS the more room it requires.

What program languages will the system support? COBOL for business software: FORTRAN for scientific; APL, PASCAL, and of course BASIC for anything.
Will I need to learn programming? Its great fun to learn anyway.
What about modifications to a program? Can this be done by the supplier?
Is there a RENTAL or LEASING scheme available, and what does it cost?
Is the computer noisy? The fan on some certainly is.
Wht is the colour of the screen? Are the characters too small? Will it be a strain on the operators eyes? Some are. And some trade unions have introduced standards.
How quickly does the representative respond to your questions before the sale? If he's slow now he certainly won't speed up after you have purchased.

More
Update
Tables on
Page 59

ALL PRODUCTS FULLY GUARANTEED

Jata-asectle
TRADE ENQUIRIES
EVERYTHING YOU NEED FOR CASSETTE BASED SYSTEMS

COMPUTER CASSETTES

High quality 5 screw assembled cassettes supplied with library boxes.

ANY LENGTHS AVAILABLE

SAVE 5p ON EACH CASSETTE WHEN ORDERED WITH STACK-PACK INSTEAD OF LIBRARY CASES. (MIN. 1 DRAWER OR 2 CASSETTES).

STACK PACK

A unique system of interlocking twin drawers for cassette storage. Add on extra drawers as your library expands. Save on library boxes, index cards and space!

60 p per drawer

£2.50 for five E695

CONNECTING LEADS

E101
 3 PIN TO 3 PIN
 £1.80

The lead to connect the 5 star cassette recorder to your personal computer.

All types of lead and plugs available - please enquire stating specifications.

STOP PRESS

NOW AVAILABLEII Programming and analyfical support for your micro-computer (Basic or Cobol).
London and Home Counties only.

CASSETTE RECORDERS

12 MONTH GUARANTEE
 £17.00 E302 5 STAR CASSETTE RECORDER
 Ideal for recording and loading your programs. It features:

\triangle DIN SOCKET
A AUTOSTOP
\triangle TAPE COUNTER

- TONE CONTROL
- MAINS/BATTERY
- AUTO RECORD LEVEL
- EARPHONE
- FREE HEADCLEANER

PLEASE ENQUIRE ABOUT OTHER RECORDERS

CASSETTE WORKSHOP

E801 FIXOTAPE

SAVE THAT PROGRAM!
Semi-automatic, helps untangle edit and repair damaged cassettes.

$£ 1.99$

E613 Screwed case empty cassettes including leader 25p each

E611	Empty library cases
	$36 p$
E615	Head cleaner cassetfe 4
	$49 p$
E614	Cassette jolning lape
	each
	$45 p$
E612 Cassette index cards	per reel
	lor 12

ORDER FORM

CODE	Qty	DESCRIPTION	PRICE EACH	TOTAL
CARRIAGE 5\% (MIN £1.00)				
All prices inclusive of V.A.T.			TOTAL DUE	

Mr/Mrs/Mlss (CAPS) \qquad Del. Address

Postcode
Access/Visa No. \square

Signature
TELEPHONE ORDERS WELCOME
Please make cheques payable to: STORKROSE LTD., 44 Shroton Street, London NW1 6UG. Tel: 01-723 0141.

Readers'
 Letters

ECM welcomes correspondence from readers.
Please keep letters constructive and mark 'private' if not for publication. Address them to: Readers Letters, Electronics \& Computing Monthly, 67 High Street, Daventry, Northants., NN 11 4BQ.

Simple
 Modification

Dear Editor,
16th December, 1981
I enclose a copy of a letter I have sent to one of your correspondents.
Perhaps this letter, suitably modified, could serve as a letter to yourself for publication.
A simple modification would be to change four "your's" to "the". They occur in the first line (2 of them), in the last line of the penultimate paragraph ("your results"), and in the first line of the last paragraph ("your program").
Yours sincerely,
W. E. Thomson

Woodhaven
Leiston Road
Aldeburgh, Suffolk IPI5 5PX

INumber Puazle

Dear Sir,
16th December, 1981
The answer to the query in a letter to Electronics \& Computing (Jan 1982 issue) is that the function SQR, which relies on a series of successive approximations carried out infiniteprecision floating-point binary arithmetic, cannot always get things exactly right.
The following ZX81 program allows the input of an expression and the printing, not only ofits value in the usual decimal form, but also of the decimal values of the five bytes of its internal floating-point binary representation (see ZX81 programming manual, p 193, first four paragraphs).
10 LET $\mathrm{A}=0$
20 INPUTES
30 LETA $=$ VAL ES
40 PRINT ES; " $=$ "; A
50 FORI=0 TO 4
60 PRINT TAB 4*1; PEEK (PEEK 16400 + PLEK $1640 I+I+1$);
70 NEXT I
80 PRINT
90 GOTO 20
Using this to investigate SQR 25 leads to:
SQR $25=5$
131 32001
INT SQR $25=5$
13132000
So, for the ZX81, SQR 25 does not equal INT SQR 25, hence the results.
There are various ways of amending the program; perhaps the simplest is:
IF INT SQR A *INTSQR A =ATHEN...
(Don't be tempted to shorten this to INT SQR
A ${ }^{* *} 2=A$. This doesn't work either).
Yours sincerely,
W. E. Thomson

Aldeburgh, Suffolk

Physical Morality

Dear Sir,
An interest in computing has lead me to speculate upon the possibility of physical immortality for the individual. This idea is expanded in my article "Immortalism and Personal Computing" (Electronics and Computing Monthly (date)).
I have been in contact with various various American organisations and have amassed conside rable data on this subject, which I would be willing to share with anyone writing to me.I am also willing to discuss by correspondence points raised in the article. I am also in correspondence with a small group who meets informally in London to discuss this subject, and can put those interested in touch.
Sincerely,
J. de Rivaz BSe(Eng)

West Towan House
Porthtowan
Truro, Cornwall TR4 8AX
~W\%

Golf Game

 Program for Sinclair 2X8118th December, 198I

Dear Sir,

I consider that the above program published in the December Issue of your magazine was very stimulating and interesting and certainly a refreshing change from the glut of variations of Space Invaders and most other Video games.

However I did find some errors in the listing when programming, which 1 note for your attention.
Amended lines:
15 FORI $=0$ TO $(\mathrm{Y} 1-\mathrm{I}) * \mathrm{YI} * \mathrm{~F} / \mathrm{L}$
520 LET DFILE $=$ PEEK $16396+256 *$ PEEK 16397+I
1070) PRINT TAB I; "ロ" (graphics shift H)

1680 PRINT AT 21,0 ; "OUT OF BOUNDS

- PENALTY SHOT"

1685 GOSUB 5010
1690 PRINT AT 0,22; SHOTS
Yours faithfully,
M. P. Wood

68 Bridgewater Road
Ipswich, Suffolk

Strange
 Results

Dear Sir,
With regard to Mr. Dowling's "Number Game" (Jan 1982), a couple of errors see mto have crept in.
Line 80 should read IF SQR A = INT SQR A... and line $\mathbf{9 0}$ has a quotation mark missing and will probably work better if inserted between lines 120 and 130 .
On the other point about the ZX producing strange results with squares of number, I had not noticed this before, but by using PRINT SQR X - INT SQR X (where X is the faulty number) a curiously regular discrepancy of either $1.8626452 \mathrm{E}-9$ or $3.7252903 \mathrm{E}-9$ is found With the accuracy normally produced, in mind, this seems an unusual oversight on the part of Sinclair.
I notice that I have one of the earlier machines with 51 Cs , could this be "teething trouble" that has now been removed in the 4 IC models?
Yours sincerely,
E. Mullinger

8 Maynard Court
Clarence Road,
Windsor, Berkshire

Another
 Quirle

Dear Sir,

T. J. Dowling's revision of Joe Aitken's "Number Data" (Letters E\&C M Jan. '82) bought a puzzling response from his ZX8I micro; that the integer of the square root of a number was recognised as equal to it's actual square root only in the case of certain square numbers (e.g. 4, 9, 16, 64 but not $25,36,49$ and many others). My own ZX81 has the same inconsistency.
This perhaps goes with another quirk, recognised by Sinclair, in some ROMs where the instruction PRINT .125** 2 gives the wrong answer.
In the meantime the program can be run successfully by deleting line $\mathbf{8 0}$ and writing in:
75 LET X - INT SQR A
80 IF X* $\mathrm{X}=\mathrm{A}$ THEN PRINT AT 7, 13;"AND A SQUARE NUMBER."
Yours faithfully,
Pete Maguire
276 City Road
Birminghann B160NE
0214294242
P.S. Great Mag!!

Conclusion

Exotic peripherals such as slide projectors or video equipment often have to be interfaced to a microcomputer. Because no "standard" interfaces exist the problem is often solved by employing a variety of different ad-hoc interface systems. Most often these are implemented through the I/O ports made available by peripheral support chips. However, when the external I/O requirements of any particular situation exceed the capability of these chips an alternative scheme involving memory mapping can be employed. These different interfacing techniques have been illustrated by the design and implementation of circuits to enable the computer control of both sequential and random access slide projectors.

Image projection equipment of this type is often used in computer based training applications. The projectors enable a series of high resolution graphic images to be presented to trainees. Their understanding of the material embodied in the pictures is subsequently tested by multiple choice questions displayed on the computer screen. In order to control and coordinate the training resources many instructors use a special high level programming tool called an author language. This consists of a series of commands that control the various hardware items available. In the author language that we use (MUMEDALA) there is a command of the form SLIDE (P, N) which is used tocontrol a bank of random access slide projectors.
Execution of this command causes slide \mathbf{N} to be shown on projector P. The way in which this command is implemented, via memory mapping, has been briefly outlined.

Computer controlled picture projection devices have a wide variety of applications in education, commerce and industry. They are particularly useful in situations in which the use of pictures greatly simplifies the process of communication - either between people or between a computer and its users. Currently there is much interest in the design of pictorial interfaces to information systems. Here use is made of pictures (rather than text or numbers) in order to specify the nature of the information that is to be retrieved and displayed. The success of these systems depends upon the high sematic content of pictorial images. This is adequately expressed in the well known adage, "a picture is worth a thousand words".

100 DIM T(80), S(80)
110 POKE 59459,255
120 PRINT " \square IAUTOMATED SLIDE PROJECTION"
130 PRINT
140 INPUT "! !HOW MANY REPEATS"; R1
150 INPUT "1 IHOW MANY IMAGES"; S1
160 INPUT "I DEFAULT DURATION"; D1
170 FORI=1 T0 80 : T $(1)=$ D1 : NEXT I
180 PRINT " IDO YOU WISH TO SPECIFY THE ORDER"
190 PRINT "IN WHICH SLIDES ARE PRESENTED?"
200 PRINT " $!\rightarrow$ ANSWER Y OR N"
210 GET A $\$$: IF $A \$=\cdots "$ THEN 210
220 IF $A \$=" Y$ " OR A $\$=$ "N" THEN 240
230 GOTO 210
240 IF A $\$=$ " Y " THEN GOTO 270
250 FORI=1 TO SI : S(I)=I : NEXT I
260 GOTO 350
270 PRINT" $!$ IENTERTHE SLIDENUMBERSINTHE"
280 PRINT "SEQUENCE YOU WISH THEM TO BE DISPLAYED"
290 FORI=1 TOSI
300 PRINT"! —— IMAGE"; I; "!"
310 INPUT "..................WILL BE SLIDE"; S(I)
320 POKE 33637,32: POKE 33638,32
330 PRINT " 11 ";
340 NEXT I
350 PRINT " $\square I$ AUTOMATED SLIDE PROJECTION
360 PRINT "****************************"
370 PRINT " $1 \rightarrow$ HOW MANY SLIDES DO NOT HAVE THE"
380 INPUT "-DEFAULT DISPLAY TIME"; N
390 IF $\mathrm{N}=0$ THEN GOTO 500
400 PRINT " 1 --ENTER THE DETAILS BELOW;"
410 PRINT"! !"
420 FORI=1 TO N
430 INPUT "-...... IMAGE NUMBER;" K1
440 INPUT "———DISPLAY TIME;" K2

460 POKE 33230,32 : POKE 33231,32
470 POKE 33270,32 : POKE 33271,32 :
POKE 33272,32
480 PRINT " 11 ";
490 NEXT I
500 REM NOW CONVERT TIMES TO JIFFIES
510 REM AND CHECK FOR INVALID SLIDE NUMBERS
520 FOR I=1 TOSI
$530 \mathrm{~T}(\mathrm{I})=\mathrm{T}(\mathrm{I}) * 60$
540 IF S(I)<00RS(I)>80 THEN 760
550 NEXT I
560 REM NOW COMMENCE OPERATION
570 PRINT "IIIEXECUTION BEGINS"
580 FOR I $=1$ YOR1
590 FOR J=1 TO S1
600 GOSUB 670 : REM GET PICTURE
610 GOSUB 720 : REM INVOKE TIMER
620 NEXT J
630 NEXT I
640 NS $=0$: GOSUB 690
650 PRINT " \square II EXECUTION TERMINATED
660 STOP
670 REM ***RETRIEVE SLIDE
680 NS $=\mathrm{S}(\mathrm{J})$
$690 \mathrm{P}=1 \mathrm{NT}(\mathrm{NS} / 10) * 16+\mathrm{NS}-\mathrm{INT}(\mathrm{NS} / 10) * 10$
700 POKE 59471,P
710 RETURN
720 REM ***TIMER ROUTINE
$730 \mathrm{~K}=\mathrm{TI}$
740 IF TI<K+T(J) THEN 740
750 RETURN
760 REM *** ERROR REPORT AND ABORT
770 PRINT "[7]।!***INVALID SLIDE NUMBER SPECIFIED"
780 PRINT "****EXECUTION NOT POSSIBLE"
790 PRINT "****UN ABORTED"
800 STOP
$450 \quad T(K 1)=K 2$

TRUS-80 ^ PET * APPLE \star VIC-20 \star ACORN USERS

Electronics \& Computing Monthly is a n editorially based magazine which means we must have a continuing supply of up to date and interesting editorial material.

While our own regular contributors provide us with excellent features throughout the year we would still like to hear from readers who can provide software and projects based upon their own microcomputers.

If you have developed original electronics and computing ideas or written an original program then why not let us see it -it will be worth between $£ 50$ and $£ 150$ if we publish it and you get your name in print. In addition it may even be the start of an interesting new career since several of our authors have either published or been invited to publish books based upon their articles.

We will also a ward three prizes $£ 300, £ 200, £ 100$ at the end of 1982 , for the best three projects published during that year.

Send your electronics and computing articles, projects and software to:
The Editor, Electronics \&8 Computing Monthly, 67 High Street,
Daventry, Northants.

sabtronics

Making Performance Affordable

-2010A 3/2-Digit L.E.D. Bench DMM
-2010A 3/a-Digit L.E.B. Bench DMM 2020 31/2-Digit L.E.D. Bench DMM with Microcomputer Interiace 2033 3 $3 / 2$-Digit LC.D Hand DMM 2033 3/2-Digit LC.D Hand DMM -2037A $31 / 2$-Digit L.C.D. Hand DMM with Temp. LP. 10 10MHzLogic Probe
$5020 \mathrm{~A} 1 \mathrm{~Hz}-200 \mathrm{KHz}$ Function Generator $-8110 \mathrm{~A} \quad 100 \mathrm{MHz}$ Q-Digit Frequency Meter - 3810 A 600MHz 8-Digit Frequency Meter 40008 600MHz 9 Digit Frequency Meter $\begin{array}{ll}8700 & 10 \mathrm{MH} \text { 2 Universal Frequeney } \\ 8\end{array}$ $8700 \quad 10 \mathrm{MHz}$ Universal Frequency Counter/imer
600 MHz Frescal
8005 5MHz Single Traca Oscilloscope - Also avallable in kit form.

Test our low priced test equipment. It measures up to the best. Compare our specs and our prices - no-one can beat our price/performance ratio.

Full colour illustrated brochure and price list from: BLACK STAR LTD.
9a Crown Street,St. Ives, Cambs. PE17 4EB
Tel: (0480) 62440. Telex 32339

PROJECT ZXEI
 TEACH

ROBOTIC ARM
CHURCH FAIR
AUTOMATIC -
OOOR SYSTEM
PROCESSINC
PROCESS TIMING
SHOP OISPLAY
ROBOTIC-

FOR,

student
teacher
enthusiast
or
engineer

YOURSELF \& OTHERS - CUT

INDUSTRIAL COSTS
WITH MICROS TO

TESTING
THE

SPEC\|ALISTS 2×81

ROBOTICS SYSTEM

* 16 CHANNELS
* OUTPUTS RATEOlamp
* Bamp INTERNAL 50va - POWER PACK JUST-PLUGS IN
'PROCESS COATROL WITH MEMORY

YOU CAN RUM THE
REAL THING OR SIMULATE
OH A PROJECT BOARO
: EASYTOPROGAAMME:
:WITHAPPLICATIONBOOK:
ONLY

G-M.Selectronics

UNIT 5, CRANBOURNE CLOSE NORBURY SW1 6,4 NG

Mini Venture is designed to run on the UK 101 with a new monitor and 7 K of RAM but it can be run on other systems with a memory mapped display. Only minimal instructions are given in the program, but here are full instructions and a detailed program description.

You have entered a series of caves in search of gold but have managed to lose your way and cannot find the exit. There is food in the caves but your main worry is meeting one of the 'THINGS' that inhabit the caves. They come in three sizes and the bigger they are the harder they fall. If they get close enough they will leap on you and a fight will ensue. If your energy is low it will kill you. 'THINGS' will randomly appear from time to time in the tunnels between the caves - so don't hang about. The 'THINGS' do not live for verylongand you may be able to out run them, but this uses up energy. To keep your energy high you need to eat as much food as possible but since you are greedy you still collect gold in case you escape. To help combat the 'THINGS' you have with you ten spells to blast them with. The spells have a limited range and are wasted if the 'THING' is out of range. More spells can be found in the caves. The more gold you collect the higher your final score but your energy will run down more quickly. Most of the gold is protected by 'THINGS' and since the caves are dark you cannot see what they contain until you reach the entrance. To pick up the gold, food etc. you move on to it and your status will be updated accordingly. The game ends when you are killed or run out of energy and die. Your final score is then displayed and this will depend on the a mount of gold collected and the number of 'THINGS' killed.

The keys used to move during the game are:-

1-Up
2 - Down

$$
4^{3} \text { - Right }
$$

Pressing key 5 invokes a spell blast and the 'THING' responds accordingly. Spells vary in strength and it may take two or three to kill a large 'THING'. The keys used can be changed to suit your uwn personal preference by altering the keyboard scan routine at line $160-185$. It isnot necessary to repeatedly press a key - especially when spell blasting since the action will continue as long as the key is held down. It is not possible to move in two directions at once or move and spell blast at the same time.
The program draws the caves onto the screen and holds their contents in the array $\mathrm{RC}(\mathrm{x})$. The contents range from a single item to two items and a 'THING'. The information held in $\mathrm{RC}(\mathrm{x})$ are converted to these items by the routine at line 7000 . The entrance to each cave consists of a different blank code (96) to the normal ASCII code MINI VE IN SEARCH OF

32 - this means that the program can detect entry to a cave and enable the entry flag (IN). The 'man' is placed at the bottom of the display and can be moved around the three caves. The caves remain blank until the 'man' reaches the entrance when the contents are then displayed. If the cave contains a 'THING' the flag M is enabled and the 'THING' is moved each time the main program loops round. When the easy game is selected the 'THINGS' move in a more random manner than in the hard game. The main program loop is quite short and the player movement is therefore fairly fast. Time consuming subroutine calls are kept to a minimum or take place when the player has stopped eg to pick up food. The cave contents are changed each time the main program loops back to the beginning but they are only displayed when the player enters a cave. Table 1 lists the program variables used and Table 2 shows the various graphic symbols used. Table 3 gives a line-by-line description of the program and from this conversion to other systems should be fairly easy.

The UK101 uses a standard 8 K Microsoft Basic and it's video memory starts at location 53248 and is formatted into 16 rows by 64 columns. Unfortunately only $48-50$ columns are displayable and the variable SP is set to 53259 in line 130 and not 53248 to allow for this difference. The bottom line of the display is used for messages and this is cleared and POKEd to by the routine at line 3000 . The top twolines of the display are used to show the total amount of gold, spells, energy and 'THINGS' killed. The position of the 'THING' and the player on the screen is determined by the value of MP and PP which are calculated from the equation $\mathrm{SP}+64^{*} \mathrm{Y}+\mathrm{X}$ where 64 is the line length and X, Y the co-ordinates of the 'man'/'THING'. SP and 64 can be changed to suit other systems.

The subroutine at line 9000 draws the ca screen and from the picture shown a scheme video displays can be worked out. The Cl command clears the screen and homes th The keyboard scan routine is enabled and c by the POKE in line 160 and can be replaced or INKEYS on other systems and the IF st in lines 165-185 changed accordingly. The

Table 1. (Program Variables)

$\begin{aligned} & Y P, X P \\ & Y, P \end{aligned}$	Horizontal and vertical co-o player
PP, Z	Player position on screen
YM, XM	Horizontal and vertical co'THING'
MP, W	Position of 'THING' on scre
D1, D2, D3	Cave entrance on screen
S, SP	Temporary screen positions
SP(0), SP(1), SP(2)	Position of top left hand cc
$B(0), B(1), B(2), B(3)$	Amount of spells, energy, \ddagger killed
RC(x)	Contents of each cave.
WW, zZ	Contents of location W anc
XX, YY	Direction of 'THING'
KE	Memory location of keyboz
M, IN	'THING' and entry flags
M \$	Message to be POKEd to sc
MS\$	String containing final scol
CT	Number of battles before v
MC	Number of moves inade by
B1, B2, B3, B4	Contents of screen around spell blast
HP	Energy of spell blast
EU	Energy level of 'THING'
EL, SL, GL	Levels of food, spells, golc
FP, SE, GP	Position of food, spells, g

NTURE HOLD by Anthony Brown

divisor in line 155 to a larger value to lower the rate and a higher value to increase the rate. The length of time a 'THING' lives is determined by the value of MC. When the 'THING' has completed 100 movements it dies and another will appear when the flag M is enabled. The 'THING' can be made to move more quickly by calling the movement routine at line 5000 more often in the main program loop i.e. bet ween line 230 and 235.

MINI VENTURE PROGRAMME Page 52

s on the or other R\$ (12) cursor. isplayed byGET tements unction
dinates of

Table 2 GRAPHICS CHARACTERS Mini-Venture by A. Brown

CHRS() Code	Character	Use
4	0	Gold
9	\square	Food
10	\square	Clear bottom line
32	\square	Space
96	-	Entrance space
128	こ	Cave wall, top
135		Cave wall, bottom
136	1	Cave wall, right
143	,	Cave wall, left
161	-	Corridor corners
181	*	Medium 'Thing'
207	7	Cave corner
208	」	Cave corner
209	L	Cave corner
210	Γ	Cave corner
240	\%	Man
243	ค	Small 'Thing'
245	ψ	Spells
252	θ	Large 'Thing'

Table 3-PROGRAM DESCRIPTION

FNR(x) defined in line 120 produces a random number between zero and x. The function $\operatorname{FNA}(x)$ produces a random position within the confines of cave x ., the left hand corner of which is defined in line 110. The two flags M and IN have a value of -1 if TRUE and 0 if FALSE. The IF statements that test these flags do not need a second argument eg IF $\mathrm{M}=(-1) \ldots$ if they are being tested for TRUE such as in line 205. The USR (x) function waitsuntila key has been pressed and it's starting address is POKED in line 100 . The PEEK statement after a USR function call determines the ASCII value of the key pressed. This function could again be replaced by GET or INKEYS.

The game can be made harder/easier by either changing the energy value EU of the 'THINGS' in lines 7095 and 260 or changing the value of the food and spells in line 7075 and 7080. The rate at which the player loses energy can be altered by changing the

100-260
100 Enable user function; call
instructions routine; initialise player
Screen addresses of the cave
entrances
Disable flag M; screen addresses of cave comers
Initial spells and energy
Clear screen: erase cursor; set up screen
Set up score board
Randomly select cave contents
Reduce energy; update energy status only
160-255 Keyboard polling/player movement
185 If key 5 is pressed call spell blast routine
190
205-210
215-225
235
240-250
255-260
1000-1035
1500-
3000-3005
3500-3525
5000-5065
6000-6045
6010
7000-7100 Fill cave with items; determine level of food, gold etc.
8000-8075 Print instructions held in DATA statements
8025 Erase cursor
8150 Print string - justified to screencentre
8500-8565 Instructions heldas DATA statements
9000-9070 Create caves on screen

16K RAM

 FOR ZX-81Any new owner of the Sinclair ZX-81 soon becomes aware of the need to:
WRITE ONLY SHORT
PROGRAMMES.

LEARN MACHINE CODE.

OBTAIN A RAM EXPANSION.

Sinclair, of course, market a 16 K dynamic Ram expansion, but long delays in arrival, and reported unreliability have caused many to think twice (I was one of the poor unfortunates who after a couple of months wait had to send the Sinclair Ram back, and face and even longer wait for a refund).
The questions raised are:

HOW MUCH RAM?
 STATIC OR DYNAMIC?
 WHAT CAN I AFFORD?

After a lot of thought and enquiries I plumped for the dk Tronics 16 K Ram. This comprises of a Glass fibre, double sided PCB. There are 17 chips on board, 8 UPD4I6-C2 static Ram chips, 7LS-TTL's, a 741 and a 12 volt regulator. This is a STATIC RAM unit and will therefore need a more hefty PSU than the Sinclair power unit, also the Ram chips require an additional 12 volt rail. dk'Tronics supply a suitable PSU with the 16 K Ram pack at no extra cost!
The only drawback is that a higher voltage is needed for the 12 v regulator, approx. 16 to 20 v . This means that the SV regulator in the ZX-81 has to dissipate more power and will therefore run hotter.
Personally, I find a warm keyboard a little disconcerting, and so have taken my own measures to overcome this (the topic of a future article perhaps?!). Do not be dismayed it is all within the specification of the SV regulator and should cause no problems.
In use the Ram pack has given no trouble at all - I haven't run out of space, I have had no crashes, and no memory shrinkage. The unit is the same width as the ZX-81 and the well positioned edge connector ensures that the board fits well and doesn't rock; electrically and mechanically it is a very stable unit.
The cost including PSU is $£ 42.95$, and a recent advertisement shows it available in kit form for about $£ 10$ less, and if the initial outlay is still too high, they also supply a Ram Pack with IC sockets to enable you to start small and build up to the full 16 K as you require / afford it.
dk'Tronics live at 23 Sussex Road, Gorlestone, Great Yarmouth, Norfolk.
A telephone call will evoke a polite and helpful response. Anyone for chess?

MICRO EDUCATION

A friend of mine was recently advised by the local driving instructor that it would be very much better for his wife to have professional driving lessons as she could easily end up killing herself if she was taught to drive by her husband. He's had her out in the car for lessons twice a day since then. I'm not sure if he's hoping that the driving instructors prophecy will come true, or if he's joined the ever growing ranks of people who take the view that a professional is someone who can do for about $£ 10$ what the rest of us can do for a fiver!

This might be a rather severe attitude to adopt towards the educational scene where so much excellent professional work goes on in schools throughout the country, but armed with your home computer you are now on at least equal footing with teachers who, especially in primary schools, are not yet able to use micros in their day to day work with the children. An increasing number of young children are now arriving for their first day at primary school with a good knowledge of letters and in some cases simple words, which they have acquired through the patient and understanding interest that their parents have taken in their educational development during the pre-school years.

If you want to begin to evolve your child's literary skills then the place tostart is with "building blocks" of the written word; the letters themselves. Here is a program that has been very successful in familiarising young children with letters, as it requires them to look at the letter presented to them by the computer, and then touch that same letter on the key board. This will probably be the first time that daddy's pride and joy has been allowed to sit down with his other pride and joy - his computer, so the motivation for the child to succeed will be high, and this is the time when the maximum educational benefit can be obtained.

One of the beauties of this program is that the young child does not need to be able to name the particular letter that shows on screen, it's simply a case of shape recognition as we saw in a previous feature. In this case though I would be tempted to tell the youngster the name of the letter as it appeared on screen, thereby teaching the letter while the child studies its form and shape as he compares the on-screen shape with the letters on the keyboard.

Letter recognition program:-
10 LET $A=$ INT (RND-64)
20 IF A 38 THEN GOTO 10
30 PRINT AT 5,0; "Touch this letter"
40 PRINT AT 10,15; CHRS 1
50 IF NOT INKEYS \pm CHRS ATHEN GOTO 50
60 PRINT AT 12, 12; "Correct"
70 FORL ± 1 TO 50
80 NEXTL
90 CLS
100 RUN
After a few weeks at school your child will set out on the long road to literarcy and you'll be the first to know when that memorable day arrives, for the entire evening will be devoted to a search for "A tin to keep my words in." Now, if father is a "roll your own fanatic" then there is no problem for it's either the Golden Virginia tin or the Strepsils tin, but in the non smoking household chaos reigns until a suitable container is found.
These precious words are written on "Flash Cards" to teach the child the pattern of the letters that go to make up the word, and it's a system of teaching words that lets the child pick up the words very quickly indeed, for they are soon able to name each word as they pick it out of the tin. It's a long and laborious process for the infant teacher to write out each word 30 times and popone

Hoime RASA By Joe Aitken

into every child's tin, and so the whole process is taken a stage further and the words are given to the children, printed in a book, which is great if your objective is to teach actual reading, but if you are wanting to teach individual words then it's definitely second best.

Every teacher has their own individual method for reinforcing those awkward words. These range from the rap over the knuckles of yesteryear to the up to date computer assisted learning used in a few schools. Now no matter which method is used in your child's school you can be right up there with the most up to date and successful methods, if you take the words that your child is having some difficulty with, or the set word for that night's homework, and feed them into a program like this:-

```
Flash card program:-
2 PRINT "Bus"
3 GOTO }2
4 PRINT "Brian"
5 GOTO 25
6 PRINT "Stop"
GOTO 25
8 PRINT "Julie"
9 GOTO 25
10 PRINT "Post"
11 GOTO25
12 PRINT "Office"
13 GOTO 25
14 PRINT "Road"
15 GOTO25
16 PRINT "Street"
25 FOR A \pm 13 TO 20
26 PRINT AT 13, A; CHRS }13
27 NEXT A
28 FOR Y }\pm0\mathrm{ TO 40
29 NEXTY
30 LET Z 土INT(RNDx9) x 2
35 CLS
37 UNPLOT 25,18
40 GOTOZ
```

During the initial runs you will have to tell the little one what the word is as it appears on screen, but after a few runs the child should be beating you at it and telling you what the word is. The trick is knowing just how long to hold off saying the word during the initial teaching runs, and this comes with practice, but do remember that if the child does not know the word, and you do not tell him what it is while it's on screen, then don't worry for it will appear again in the random pattern and you can tell the child what it is at that time.

Talking of recognising words leads me to this month's mini competition. I got a letter from a reader who says that his ZX8I is a $\mathrm{x} \$ /$ xer at loading. Now I reckon to know most of the abusive words on the go but I can't find one with the first and fourth letters the same, perhaps some of our Aussie readers will be able to help. This really takes us well away from our young children and on to the promised graphics program for science and technology students. It's always a difficult thing to describe electron flow to a student. I've seen it done with coloured marbles, felt tip pens or copious amounts of chalk and a handy black board duster, but until I used a micro none were very successful.

BLACK GRAPHIC

I like to describe a transistor as being rather like a main road, with a side road leading off. Most of the cars travel down the main road, while a few turn off into the side road. This works well so long as all of the cars keep moving, but if one stops then the whole of the traffic flow stops until such time as the stopped car moves on. The main road is the collector-emitter current which shows on screen as the moving black graphic; the side road is the base current
and shows as a grey graphic. This program shows the flow pattern in the transistor a nd by touching key S you can block the base current and demonstrate that the collectoremitter current flow is also blocked; to clear the blockage touch key G and the normal flow will return. It is a good way to introduce students to the working of a transistor.

You can use a similar program structure to show many other instances of current flow, such as series/ parallel arrangements or the operation of a switch. In every case the computer will have enabled you to take electrical current flow out of the area of abstract study and present it in an attractive, visual and easily understood way.

The working of the N.P.N. transistor

5 PRINT AT 2,13;"Collector"; AT 9,4; "Base"; AT 18,13; "Emitter"; AT 9,16; "NPN Transistor"
10 LET $A \pm 21$
20 LET B ± 24
30 LET D ± 19
40 LETE ± 22
50 FOR $N \pm 9$ TO 35
60 PLOT A,N
70 PLOT B,N
80 NEXT N
90 FOR M ± 13 TO 21
100 PLOT M,D
110 PLOT M, E
120 NEXT M
130 UNPLOT 21, 20
140 UNPLOT 21, 21
145 FOR A ± 1 TO 18
150 PRINT AT A,11; CHRS 128; AT A1,11; CHRS 0
160 NEXT A
165 LET B \pm B $\times 1$
167 IF $B / 10 \pm \operatorname{INT}(B / 10)$ THEN GOSUB 300
170 GOTO 145
300 FOR A ± 1 TO 11
310 PRINT AT A,11; CHRS 136; AT A1,11; CHRS 0
320 NEXT A
325 IF INKEYS \pm "S" THEN GOTO 500
330 FOR B ± 11 TO 5 STEP -1
340 PRINT AT 11,B;CHRS 136;AT11, B $\times 1$; CHRS 0
345 IF $\mathrm{B} \pm 11$ THEN PRINT AT 11 , B $\times 1$; CHRS 5
350 NEXT B
370 RETURN
500 IF INKEYS \pm "G" THEN GOTO 330
510 GOTO 500

ZX 80/81 HARDWARE/SOFTWARE

ZX KEYBOARD

A full size keyboard for the $80 / 81$. The keyboard has all the 80/81 functions on the keys, and will greatly increase your programming speed. It is fitted with push type keys as in larger computers.
The keyboard has been specially designed for the Sinclair computer and is supplied readybuilt. It also has facilities for 4 extra buttons which could be used for on/off switch, reset, etc. $£ 27.95$

4K GRAPHICS ROM

The dK Graphic module is our latest ZX81 accessory. This module, unlike most other accessories fits neatly inside your computer under the keyboard. The module comes ready built, fully tested and complete with a 4 K graphic ROM. This will give you 448 extra pre-programmed graphics, your normal graphic set contains 64 . This means that you now have 512 graphics and with there inverse 1024. This now turns the 81 into a very powerful computer, with a graphic set rarely found on larger more expensive machines. In the ROM are lower case letters, bombs, bullets, rockets, tanks, a complete set of invaders graphics and that only accounts for about 50 of them, there are still about 400 left (that may give you an idea as to the scope of the new ROM). However, the module does not finish there; it also has a spare holder on the board which will accept a further 4K of ROM/RAM. IT NEEDS NO EXTRA POWER AND WORKS FROM YOUR NORMAL POWER SUPPLY. £27.95

RAM 80/81

16K RAM

Massive add-on memory for 80/81
16K KIT-A-KIT VERSION
of a 16 K Ram. Full instructions included. All memory expansions plug into the user port at the rear of the computer. 16 K RAM $£ 42.95$ 16K KIT $£ 32.95$
2 K \& 4 K RAM
Static Ram memory expansion for the $80 / 81$. They both work with onboard Ram i.e. 4 K plus onboard $=5 \mathrm{~K}$. This is the cheapest small memory expansion available anywhere. 2 K RAM £15.95. 4K RAM £22.95

16K 81 SOFTWARE

As seen at the $\mathbf{Z X}$ Microfair.

DEFLEX This totally new and very addictive game, which was highly acclaimed at the Microfair, uses fast moving graphics to provide a challenge requiring not only quick reaction, but also clever thinking. One and two player versions on same cassette. $£ 3.95$ 3D/3D LABYRINTH You have all seen 3D Labyrinth games, but this goes one stage beyond; you must manoeuvre within a cubic maze and contend with corridors which may go left/right/up/down. Full size 3D graphical representation. £3.95.
CENTIPEDE. This is the first implementation of the popular arcade game on any micro anywhere. Never mind your invaders, etc., this is positively shining, the speed at which this runs makes ZX invaders look like a game of simple snap. $£ 4.95$.
Please add $\mathrm{£1}$ p\&p for all hardware, Software p\&p free. Specify ZX80/81 on order. ALL OUR PRODUCTS ARE COVERED BY A MONEY BACK GUARANTEE

Dept. ECM
23 Sussex Road, Gorleston, Great Yarmouth, Norfolk. Telephone: Yarmouth (0493) 602453

4 RAIL MICRO COM Power Supply

The present design arose from my own need for a reasonably heavy-duty unit to supply a NASCOM 2 microcomputer with 64 K memory. To allow for further expansion I decided that the +5 V rail should be capable of supplying about 5 amps. The unit is fairly compact and should fit into the larger type of computer case. However if it is mounted initsownseparate enclosure then it may double as a general purpose Power Supply, the voltages provided being suitable for much popular circuitry.

Regulated Outputs are:
+12 V at IA
+5 V at 5 A

- 5 V at IA
-12 V at IA
P.C.B.

Design Considerations

Although many IC's used in computer circuitry operate from a single +5 V supply, there are still a great many memory devices (for instance the 4116 Dynamic RAM and 2708 EPROM) which require additional supplies at +12 V and -5 V . As the almost universal RS232 interface (used for teletype, printers etc.) requires +12 V and -
12 V this means that a computer P.S.U. to be really useful must have 4 well-regulated output voltages with the +5 V rail being capable of handling quite heavy currents.

A problem which has received less attention in the popular journals than perhaps it merits is that of mains-borne interference. Electro-mechanical equipment generates switching spikes which, carried by the mains, can be very troublesome and even damaging to computer circuitry. In industry, where
computers may of necessity be situated near lathes, drills, pumps etc., such spikes or 'transients' may appear as spurious data, and in extreme cases may cause the destruction of MOS devices whose enormous input impedences make them peculiarly susceptible to this problem. Even the personal computer at home can be affected, as anyone will be aware who has ever entered a long programme by hand only to lose it all when the central-heating switched on!

Rather than find space for an extra P.C.B. I decided to use a suppressed mains chassis plug (Siemens type K141) with a VDR (Voltage Dependent Resistor) as an added protection against transients. The latter is a semi-conductor device which presents a high resistance to voltages below a certain threshold (in this case 400 V peak) but a low resistance to voltages above that threshold. As the device 'turns on' very quickly it provides a very useful protection against sudden peaks.

PUTER

by Tony Doherty

The Bremil (SEE PAGE 44)

The well-known 78 series (positive) and 79 series (negative) regulators were chosen to provide the 4 stable voltages required. These devices are internally protected against overload and are also reliable and inexpensive. Each regulator drops $21 / 2-3 \mathrm{~V}$ internally and therefore the unregulated supply to each must be at least this margin higher than the required output voltage.

Because of the different power ratings of the four rails and the difficulty of obtaining a transformer with suitably wound secondaries I decided to use two separate
transformers. A 15 V Toroidal supplies the three IA rails. The secondaries are connected in series to give a 15-0-15 supply. This is rectified by BR2 and smoothed by C3,C4 to present partially regulated supplies to the three monolithic regulators Q4,Q5,Q6. R3 drops some of the unwanted voltage to the -5 V regulator, reducing the heat dissipated by the device.

The heavy-duty +5 V rail is derived from a 12 V 80 VA Toroidal with secondaries connected in parallel. The output is rectified by BR1, smoothed by $\mathrm{Cl}, \mathrm{C} 2 . \mathrm{A}$ 7805 holds the output at +5 V but can only supply about IA. The rest of the current is passed by the power transistor Q2, with Q1 providing current limiting. R1 provides bias current for Q2 and Q2's collector is held at +5 V by the 7805 . Q1 provides current-limiting as follows. When the current through Q 2 is less than about 4 A the voltage across $R 2$ is insufficient to turn on Q1 and the transistor is accordingly inactive. As the voltage across R 2 rises to

- (Continued from Page 43) about .7 V the transistor starts to conduct, reducing the Base-Emitter voltage of Q2 and limiting the current through the latter.

Diodes DI-D4 are included in the circuit to prevent a possible latch-upon switch-on, where one regulator might start up faster than the others and force an adjoining rail into reverse bias.

The LED's D5-D8 show that a voltage is present at each output. They may be mounted on the front panel of whatever enclosure is selected or if inconvenient may be dispensed with altogether - though they do usefully monitor the state of the power-supply.

Construction

Few difficulties should be encountered provided one observes the polarity of diodes and electrolytic capacitors. However the following points should be noted:

1. The +5 V rail and the earth return rail carry quite heavy currents. If you are making your own PCB this should be allowed for in the width of track allocated.
2. $\mathrm{Q} 1, \mathrm{Q} 3$ and Q 4 are connected via their back-plates rather than by their centre pins. The centre pins should be cut off short.
3. Q2's collector is connected to the PCB via one of the fixing screws. This is normal in a T03 package - the collector being connected internally to the metal case.
4. All transistors and IC's are heatsinked as are the two bridge rectifiers. The heatsinks should be bolted to the rectifiers before the latter are soldered to the PCB.
5. The transformers should be connected as follows:

TR1: Red and blue connected together; Grey and yellow connected together.
TR2: Blue and yellow connected together.
The transformer secondary leads are quite thick and you may need a heavier bit on your soldering iron to get a good connection.
6. The PCB requires one wire link.
7. The power outlets may be hard wired to your computer bus or may be fitted with terminal pins.
8. The VDR may be soldered across the live and neutral terminals of the chassis socket.
9. 2A anti-surge fuses should befitted in series with mains live and neutral.

Stand-Alone Construction

The whole PSU will fit NEWRAD Case type 2/37:

The two transformers should be mounted between the floor of the enclosure and the free chassis plate using the fixing bolts supplied with the transformers.

The PCB should be mounted on top of the chassis plate using $1 / 2 \prime$ tapped pillars (6 BA). Make sure the transformer fixing screws do not touch the PCB.

The chassis plug and fuse holders may be fitted to the rear panel. The power outputs (including 0 V) should be brought out to insulated terminals mounted on the front panel. The four LED's may be mounted directly over the appropriate power outlet.

A single earthing point should be mounted on the chassis to which mains earth and 0 V should be connected.

Parts list

R1: 2R4, 3W.
R2 : 2×0 R22, $2^{1 / 2} \mathbf{W}$, connected in parallel.
R3: 2×15 R, 7 W connected in parallel
R4: 200R,
R5: 750R
R6: 200R
R7: 750R
C1, C2 : 4,700 $\mu / 40 \mathrm{~V}$ electrolytic.
C3 : 2,200 $/ 40 \mathrm{~V}$ electrolytic.
C4: 4,700 $\mu / 40 \mathrm{~V}$ electrolytic.
C5-C8 : $2.2 \mu / 35 \mathrm{~V}$ tantalum.
C9-C12 : $.1 \mu$ Ceramic.
Cl 3 : $10 \mu / 25 \mathrm{~V}$ tantalum.
BR1, BR2 : BR64 (6A).
D1-D4 : 1N4002 (1A silicon diodes).
D5-D8 : LED's to suit.
Q1 : TIP42A
Q2: MJ2955
Q3: 7805
Q4: 7812
Q5: 7905
Q6 : 7912

Miscellaneous

TR1: 80VA 12V Toriodal (ILP type 32012).
TR2 : 80VA 15V Toriodal (ILP type 32013).
VDR : 240 V RMS rating (RS Components).
7 small heatsinks for X75 package Electrovalue type TV4. T03 heatsink Electrovalue type TV3 Vero Pins; 20 mm Fuseholders; 2A anti-surge fuses; suppressed chassis socket Siemens type K141; insulating bushes for MJ2955; 4 LED'sand mounting bushes.

Extra parts for standalone construction

NEWRAD instrument case type 2/37;5 insulated 4 mm terminals (Electrovalue type TPl) - choose different colours to distinguish the outputs; $4 \times 6 \mathrm{BA} 1 / 2^{\prime \prime}$ tapped pillars; $8 \times 6 \mathrm{BA}^{1 / 4^{\prime \prime}}$ screws,

All parts used in the project are stocked by Electrovalue Ltd., but most are fairly standard and should be readily available elsewhere.

JOSMPH SPENCER EGPARTNERS LTTD offer

 The Sensational SHARP MZ-80K

Deferred payment scheme

For 11 payments of only $£ 39.90$ this top quality MZ .80 K can be yours!

Competitive finance

We have negotiated a very competitive interest rate for this scheme with Musters Finance of Nottingham. Credit customers will pay only 10% extra, (equivalent A.P.R. 26.4%). So the total credit priceis $£ 438.90$ to includeV.A.T. and delivery, as opposed to the cash price of $£ 399.00$.
What to do next
If you wishto use the creditscheme. just complete the orderform and send it with the deposit to us. We will send you a simple Musters loan form to complete. When you return this, we will arrange despatch of your MZ-80K.

OTHER JOSEPH SPENCER \& PARTNERS			
	NETT	V.A.T.	total
MZ I/O Expansion Interface	96.00	14.40	110.40
MZ80 F.D. Dual Disks	560.00	84.00	644.00
MZ80 F I/O Disk Interface .	52.00	7.80	59.80
MZ80 FMD Master Disk and Manual .	20.00	3.00	23.00
MZ80 F15 Disk Cable.	8.00	1.20	9.20
MZ80 FOS Extra Disk Cable	7.00	1.05	8.05
MZ80 P3 Dot Matrix Printer	365.00	54.75	419.75
MZ80 T20C Machine Language	18.00	2.70	20.70
MZ80 TU Assembler	36.00	5.40	41.40
MZ80 T40E Pascal	40.00	6.00	46.00
MZ80 I/O-1 Universal Interface Card	40.00	6.00	46.00

Mail Order Form

Enter all items you require together with the price. Total all items for CASH PRICE. Despatch order with cheque payable to Joseph Spencer \& Partners Ltd. Credit customers add 10\% to cash price- Divide CREDIT PRICE by 11 to give deposit. Seend cheque for this amount with your order.

EECM

Generation of electricity from the wind is well known. Usually a propellor is turned into the wind, and is used to turn a generator. Sometimes this is via a step up gearbox or belts. Problems arise because of the need to turn the propellor into the wind. As the machines twists and turns in gusts, gyroscopic forces put an extra strain on the tower, which also carries the large weight of the generator.

One modification to get over these gyroscopic forces is used on a machine called the Trimblemill. This uses contrarotating blades. This also means that no step up gearing is needed as the generator has both field and armature rotating in opposite directions. However, there is a high cost to be paid for this technology, and sets are of the order of 64 p per peak watt for a 12.5 kW machine. This does not compare favourably with the potential of solar electricity, but it is available now rather than in the future.

Another alternative is the vertical axis machines. These use vertically mounted propellors, that don't need pointing into the wind. A single rotating column can be the combined mast and shaft to drive a generator, mounted with the shaft vertical, on the ground. Some designs have the advantage that the blades feather individually, so when the wind drops in gusty conditions they don't waste energy by acting as blowers. Others have variable geometry, so that in high wind speeds they can still generate energy, but don't run so fast as to fly apart. Horizontal axis machines have to shut down after the wind gets to a certain speed.

However, which ever way one does it, rotating machinery held high aloft is always a potential danger and is going to need regular and careful maintenance.

Therefore if a static method can be found to generate electricity from the wind, thenit will be at a distinct advantage, especially ifit is cheaper as well.

The first time

the writer heard of this possibility was in an obscure magazine that was originally about "alternative technology", called Undercurrents. In the issue No. 12 a few lines described an electrostatic aerogenerator made by a M. Clitton in France. The whole thing seemed rather unlikely and was only given passing thought.

However in January 1978 an article appeared in the Institution of Electrical Engineers' monthly magazine "Electronics and Power" called "Sparks from Steam". This described how static electricity was made in the 1840s from jets of steam. The largest generator was of considerable power. However. it is not easy to convert high voltage high impedance DC to more useful levels of $A C$ voltage and current, so

Generating electricity from the wind without moving parts

by J. de Rivaz

the matter was never taken up. Mechanical generation became the norm.
Then in March of that year, a further article appeared in "Electronics and Power" describing the work of the Marks Polarised Corporation (153-16 Tenth Avenue, Whitestone, NY 11357, U.S.A.) This corporation, under its president Alvin M. Marks, is researching into a "Charged Aerosol Wind/Electric Power Generator". At a symposium on electrohydrodynamics at Colorado State University in January 1978 Mr Marks presented a paper on experiments on using charged water droplets to generate power from the wind.

These droplets are pre-charged and emitted into the wind stream. As they are blown away from the emitter, work is done on them by the wind moving them along a potential gradient between it and the ground. The electrical load is connected between the source and the earth, ie there is no collector electrode as such. An experimental nozzle was built that gave an output of 312 microwatts for a charging power of 86 microwatts.

It is suggested in the paper that a large area electrode screen would generate 450 $\mathrm{w} / \mathrm{sq} . \mathrm{m}$ in a wind of $10 \mathrm{~m} / \mathrm{s}$.

The problem of D.C.

However, even if one has the power available, it will still be a high voltage D.C. The technology to convert this to a low voltage A.C. at 50 Hz to power domestic appliances is likely to be expensive. Electrostatic motors are possible, but again it is unlikely to be practical to have an alternator driven by such a motor.
The Undercurrents article first mentioned discussed an AC machine. In this system, "electrostatic packets of air" are injected into the windstream, and collected by a grid downstream. As they pass through this grid, they are said to induce alternating potentials. The frequency depends on the velocity of the wind and the velocity of the injecting potential. The inventor suggests that a constant output can be obtained by controlling the injector frequency by electronic servo.
It is difficult to see why in this case the output would alternate aroutrd zero as opposed to pulsing unidirectionally from zero - something quite different. In order to get AC it may be necessary to alternate, rat her than just pulse, the injector potential.
Also, it is clearly better to use the earth as the collector. Aiming the particles at a grid implies that the wind direction is important.

Suggested lines for experiment

A convenient source of high voltage is a capacitor discharge ignition unit feeding a car coil. Two units could be used, one giving positive pulses, the other negative. The two units would be driven from a two phase oscillator, so that they come on alternately.

This unit would be placed at the high voltage end of the primary of a transformer converting 100 Kv to 240 v . A re-chargeable battery. would also have to be floated at the high voltage end to provide start up current. Of course once the machine started, this battery would be charged from generated current from a winding on the transformer.
It is not known at present what limitations there are on frequency. However, the higher the frequency that could be generated, the smaller and cheaper the transformer required. Televisions include apparatus to generate about 25 kV at 15.625 kHz and subseqently rectify it.

This idea was presented to the IEE in the form of a letter by the writer, which was published in June 1978.
In October a further letter appeared suggesting some snags. The main one seemed to be that the internal impedance of the system would be high - of the order of hundreds of millions of ohms at 50 Hz per electrode. (This means you need a great many electrodes!) Another relating to this is the coupling between the charged particles and the air. Energy can only be extracted by slowing the air down, and with a charged particle generator this has to be done by the charged particles.
However, one possible alternative was suggested. That is using ionised air instead of charged particles. If every molecule were singly ionised the charge would be 900 coulombs per litre. It is unlikely that this theoretical maximum could be reached, but nevertheless it appears better than the case with aerosols. With aerosols, Mr Marks suggest that the optimum radius/no of electrons per droplet is 120 Angstroms/ I electron. But the charge per electron is $1.6 \times$ $10^{-}-19$ coulcombs!
Unfortunately, the practicality of apparatus involving ionised air working in all weathers is not good.

Conclusions
The main problem with power from the wind is that this power is very diffuse. Mechanical methods of collecting it involve large expensive structures. When electrostatic methods are considered, this problem turns to one of high impedances. This means the difficulties of large structures become the difficulties ofdealing with high voltages.
Nevertheless, the cash rewards for a cheap domestic aerogenerator are large. If an effective design can be found, the government will have less justification for the nuclear programme, with its attendant problems. Also, a large factor in inflation, fuel costs, will be reduced.

A Digital Logic Probe

by Harry Fairhead

Abstract

The kit under review this month is Global Specialties Corporation's Logic Probe Kit, LPK-1. Why build a logic probe from a kit? Well, first let's see why you might want a logic probe in the first place. A logic probe detects and displays logic levels, pulses and pulse trains. In other words it indicates the logic state of any point in a circuit. This makes it a useful piece of test equipment for digital repair work or for commissioning new circuits.

The advantages that a logic probe has compared to its alternatives, a logic analyser or an oscilloscope, are that it is easier to use; that is easily portable, which makes it suitable for field maintenance applications; and very much cheaper. While you'd need thousands of pounds for a logic analyser, and hundreds of pounds for an oscilloscope, you can buy a rudimentary logic probe for under $£ 20$. For this reason alone the logic probe is likely to be the one piece of digital test equipment that an enthusiast will acquire.

The question of financial outlay brings us to the reason why you might prefer to build a kit to buying a ready assembled logic probe -- you can make a worthwhile saving for just an hour or so's work. In the case of GSC's products you can save over a third of the purchase price of the built logic probe by putting the kit together. While the kit costs $£ 15.52$ (including VAT and postage and packing) the finished article (which is the LP-2) costs $£ 22.14$ (inc.).

If you are keen to make limited funds stretch, why not go the whole hogand build a logic probe from scratch? This is certainly a possibility. The main snags are making your circuit fit on to a small enough board and in finding a suitable casing. A logic probe has to be the right size and shape to be hand-held. I have seen the tubes that single cigars are sold in used as cases, but for the professional finish GSC actually sell a purpose designed case (for $£ 4.88$ inclusive of VAT and postage and packing).
There are a variety of logic probes

available so how do you choose between them? In general, the more you pay the more sensitive the probe you'll acquire. (iSC market a range of probes and this kit is at the bottom end. The main way in which the more expensive probes differ is that they can detect much faster signals. Once built the LPK-1 will detect a minimum pulse width of 200 na noseconds while the LP-3, at $£ 58.08$ (inc) will capture pulses as narrow as 10 nanoseconds. (Ten nanoseconds is the fastest pulse that can be generated by TTL logic). All the GSC probes are suitable for TTL, DTL, HTL and CMOS logic levels. If you want a probe that is dedicated to just one of these types then you will be able to get a more powerful probe for less cost.

The LPK-1

The kit comes neatly packaged ona piece of stiff card. Once you've got through the plastic wrapping you'll discover a booklet of instructions for building and operating the probe, Its grey plastic case, a printed circuit board cut to the correct shape to fit inside (it is in fact packed inside the case) and all the components packed together in one plastic bag (also contained inside the case). The components comprise seventeen resistors, eight capacitors, three diodes, three LEDs, two transistors, one integrated circuit and a number of additional bits of hardware (including the PCB, the probe tip, a power cord and adhesive labels and of course the case). Although the electronics components would cost you only about $£ 3$ and would be readily available, it is these other bits and pieces that would be more difficult to obtain or substitute for.

In addition to a comprehensive parts list. the instruction booklet gives a page showing diagrams of each type of component, and a resistor colour code chart. In this aspect the kit is an especially suitable one for a beginner. On the other hand there are no instructions on how to use a soldering iron which other beginner's kits often include the instructionssimply advise that to keep the soldering iron tip clean it should be wiped often with a sponge.

Rather than the usual wordy instructions, the part of the assembly instructions about placing components on the PCB is all covered in two anotated diagrams. These are very clear but may be rather too abbreviated for the beginner. The diagrams are, however. very necessary as there is no indication on the PCB of where to position the components. PCBs often have silk screen overlays which show the positions cach numbered component will occupy there is no such guidance in this kit so it is a case of using the diagrams to work out which drilled holes relate to each resistor. capacitor, etc. This is just a niggling
criticism but I found that it was rather misleading to have a diagramatic instruction suggesting that I prepare my soldering iron right at the beginning when in actual fact the instructions meant me to place in position all the resistorsand the IC and then solder all of them to the PCB in one goand, similarly, then to posdition all the other components before doing the rest of the soldering.

The diagrams included in the remainder of the instructions were also very clear. The instructions suggest you use a quick-drying glue for securing the LED holder in position. I used "Superglue" which fastened it immediately. I would advise using "Superglue" - but be careful you position it exactly as there can be nosecond chances!

I was pleased to notethat the instructions advise you to check that the probe is working before putting the circuit into its case. Details of an appropriate test are given and as long as you've followed the assembly instructions you should experience no trouble. If you do not get the response described, however, a useful troubleshooting chart is included, listing the most common problems and their remedies.

I found the final assembly the most difficult part of building this kit. The problem is withouble. If you do not get the
response describe, however, a useful troubleshooting chart is included, listing the most common problems and their remedies.

I found the final assembly the most difficult part of building this kit. The problem is with getting the three LEDsinto their holes. This needs a combination of firmness and gentleness. You need to be patient at this stage or you may ruin your work.

Even though I found this stage tricky, the whole assembly took well under an hour and I would imagine that even a novice circuit builder could complete the kit in about an hour.

The manual includes two pages about testing the digital logic probe without explaining why these tests a threshold test and a pulse test - are required. The short answer is that they are not really necessary. They check the calibration on the probe but if the probe works then it is reasonable to consider that it is working to specification. So if you do not have the equipment needed (a 5 volt regulated power supply, a digital voltmeter and a linear potentiometer) then do not fret just assume your probe is properly calibrated UNLESS IT GIVES YOU STRANGE RESULTS! For example, take a circuit you know about and which you are confident is working properly and
see if the probe gives you the signals you'd expect. If at any stage of the testing you find the probe is faulty and you cannot put it right then return it to GSC at their address in Essex. Whether or not a charge is made for the repair will depend on whether the fault was caused by your incorrect assembly of the kit or a defective part being supplied originally.

The booklet explains how the probe is used and gives a chart to help interpret the signals emitted. However, there is actuallya lot more to know about the use of yourlogic probe - and this will be dealt with next month.

Conclusion

This is an attractively presented kit which is suitable for the inexperienced kit builder, though the absolute beginner would need some additional instructions. Balancing out timeagainst cost, the LPK-I, seems to offer a worthwhile saving over comparable ready built logic probes. However, before you rush out to buy one consider the applications you wish to use your probe for and decide whether a pulse width of 300 nanoseconds is sufficiently accurate. If this sounds like excessively complicated advice be sure to buy next month's Electronics and Computing for the second part - How to Use a Logic Probe.

C.A.D.
 Continued from Page 28

here will save a fair amount of memory space. The array covers the elements of a series of matrices, without the use of which the calculation of networks would be hopelessly clumsy and wasteful of memory space. More will be said about this use when the logic of computation employed is covered in future articles.

For convenience of reference this set of programs has been christened 'LADNET' because it has beendesignedtodeal with the family called ladder-networks. The typical ladder network is a series of impedances arranged as a four terminal circuit in which one input and one output are strapped together, and usually taken to ground, while the other two are joined by a number of element in series interspersed with others shunting various locations along the chain to ground. This is a common form of electrical wave-filter, the other common form consisting of two series arms balanced to ground, and shunted by elements between similar points in the two arms. This form, the balanced ladder network, can be dealt with by this program over the

Typical Ladder Network.
frequency range only in which it is truly balanced to earth.

A two active armed network, in which the two points joined by shunt elements are not located at similar points in the two arms, is called lattice type, and is not covered by this program. One type, not a true ladder, but so frequently used, and amenable to the methods used here, is covered, and is usually called a 'tee filter'. Two further forms, frequently used in conjunction with ladder networks, the transformer and the transistor driver are also covered, although the use of the 'active' net destroys the two-way symmetry normally associated with purely passive sections.

A diagrammatic ladder network is shown in the figure, and where the number of sections might well exceed ten, the amount of memory required to deal with it as a whole, would be excessive. This problem is overcome in the present proposal by storing only the values of the
components, evaluating progressively along the net, so that only the intermediate values of one section have to be stored, and also tackling only one frequency at a time. For the final output therefore only the overall transmission over the chosen frequency range has to bestored at thesteps chosen, but the intermediate results can be automatically output n the printer before they pass from memory. This ability to output many sets of intermediate values on printer by a suitable setting of a debug variable index at any stage of running, allows valuable flexibility in locating unsuspected faults in local configurations.

It also allows an initial run to be made at small range of log-spaced frequencies on the initial scan, and then to enter a much smaller range of closely spaced frequencies on the initial scan, and then to enter a much smaller range of closely spaced frequencies in a region where more detailed view is desired of a rapidly changing characteristic.

Computer Shick l.itl_ 14. Pittville, Street.Cheltenham,Glos.Telephone:(0242)584343 Credit available through major credit company. Access or Barclay Card Accepted. Mailorder Enquiries Welcomed.

Money，money，money！

There＇s never quite enough of it，is there？Especially at this time of year，with the aftermath of Christmas spending to contend with， coupled with heavy quarterly bills．Furthermore it is the season of glossy holiday brochures，beckoning you on to spend even more money you haven＇t got！

This month I thought we might take a look at personal finances， particularly relating to borrowing money．

W⿵冂人䒑＋N

The problems of getting it－and then repaying it

It seems to me that thereare two problems．Firstly，getting hold of the cash one needs．You may have in mind a home extension， replacement windows，double glazing or even a new car for the Spring．The second problem is coping with the level of repayments that build up．Not only is there the mortgage，but also H．P．，Bank loans，second mortgages and those credit card repayments！The gradual increase of these monthly outgoings can become a worrying burden．

But what really is the problem？

I believe that the real problem is the build up of short term borrowings．Most of the sources of finance mentioned aboverequire repayment in two years or less．Wouldn＇t it be much better to spread them over a much longer period？

Remortgages

You may well reply that this is surely easier said than done．But there is a way that is worth investigating．Most people who have owned a house for a few years have now built up substantial equity in the property．Houses worth $£ 30,000$ very often have a mortgage of only $£ 5,000$ to $£ 10,000$ outstanding to the Building Society．The idea of a remortgage is to approach a nother Building Society for a completely new FIRST mortgage on your house．We are not talking about a second mortgage in addition to your present Building Society loan． We call this process remortgaging the property．

4．

How to do the sums

The way to go about it is to add up all your present borrowings．The example below illustrates this process．You may well find that you have loans of various sorts that tot up to $£ 5,000$ ．You then add this total to your present Building Society loan，which might be another $£ 5,000$ ，and then seek a new mortgage for the whole $£ 10,000$ ！Out of this figure you pay off the present Building Society and all the other loans．You then have only one debt and one monthly payment．

W०००००००००००००००००
BEFORE

Building Society Mortgage	5,000	65
Car H．P．	2,000	100
Credit Cards	500	50
Second mortgage	1,500	45
Bank Loan	1,000	50
	10,000	310

AFTERWARDS

Building Society mortgage 10,000

Reduced outgoings

All E．C．M．readers are numerate people，I am sure！So everyone will have noticed the dramatic reduction in outgoings．Some will correctly argue that they have now committed themselves to these repayments for 25 years．This is quite true．But think about the impact of inflation on your original mortgage．Surely it makes sense to spread your repayments over as long as possible，reduce your outgoings now and so increase your spendable income TODAY！

Remortgages available now

Obviously this idea will not appeal to everyone．It will also not be available to every one for various reasons relating to eachindividuals personal circumstances．If，however，you believe reorganizing your repayments would be helpful，or you have some major item of expenditure in mind where a remortgage might apply，then take a look at the idea．

Remortgages are available from some Societies at present． Whether you get one depends on the facts of the case and how they are presented．You can approach your insurance advisor who may be able to guide you．If you wish to complete the coupon below and mail it to us，we will pass it on to a sister organization of ours that specializes in this area．

I hope that this article will help you to have a financially more comfortable 1982！

[^3]
Mini/Venture Program

100 POKE 11,0: POKE 12, 253: GOSUB 8000: $S P=53259: ~ Y P=14: X P=25:$ PP $=5 P+Y P^{*} 64+X P$
$105 \mathrm{DI}=53916$: $\mathrm{D} 2=53668$: $\mathrm{D} 3=53932: \mathrm{KE}=57088$: $\mathrm{IN}=0$
$110 \mathrm{M}=0: \mathrm{SP}(0)=53711: \mathrm{SP}(2)=53278: \mathrm{SP}(2)=53741$
$115 B(0)=10: B(1)=100$:
$120 \operatorname{DEF} \operatorname{FNR}(\mathrm{X})=\operatorname{INT}\left(\mathrm{RND}(1)^{*}(\mathrm{X}+1)\right.$)
$125 \operatorname{DEF} \operatorname{FNA}(\mathrm{X})=\mathrm{SP}(\mathrm{X})+64^{*}(\mathrm{FNR}(4)+1)+\mathrm{FNR}(11)+1$
130 PRINT CHR\$(12): POKE 53325,32: GOSUB 9000: $S P=53259$
$135 S=53325$: $\mathrm{H} \$=" E N E R G Y ":$ GOSUB 1500: $S=53362$: M $\$=" S P E L L S ":$
GOSUB 1500
$140 \mathrm{~S}=53389$: $\mathrm{M} \$="$ GOLD": GOSUB 1500: $\mathrm{S}=53426$: $\mathrm{M} \$=" \mathrm{THINGS"}$:
GOSUB 1500
145 GOSUB 3500
150 FDR $1=010$ 2: RC(1)=FNR(10): NEXT
$155 \mathrm{~B}(\mathrm{l})=\mathrm{B}(1)-\mathrm{B}(2) / 100$: GOSUB 3520 : If $\mathrm{B}(1)<1$ THEN 1020
160 POKE 530.1: POKE KE, 127: A=PEEK (KE): POKE 530,0: $X=X P$: $Y=Y$ P
165 IF $A=127$ THEN $Y=Y-1$
170 IF $A=191$ THEN $Y=Y+1$
175 IF $A=223$ THEN $X=X-1$
180 IF $A=239$ THEN $X=X+1$
185 IF $A=247$ AND M THEN GOSUB 6000
190 IF M THEN GOSUB 5000
$195 Z=S P+Y * 64+X: Z=\operatorname{PEEK}(Z)$
200 IF $\boldsymbol{Z}=32$ THEN GOTO 235
205 IF $\Pi=96$ AND(IN) THEN IN=0: GOTO 235
210 IF $\pi=96$ AND IN $=0$ THEN IN $=-1$: GOSUB 7000: GOTO 235
215 if $\bar{Z}=4$ THEN $B(2)=B(2)+G L$: $\operatorname{GOSUB} 3500$: GOTO 235
220 IF $\boldsymbol{\pi}=182$ THEN B(1) $=$ E(1) +EL : $\operatorname{COSUB} 3500:$ GOT0 235
225 IF $Z Z=245$ THEN B $(0)=B(0)+S L$: GOSUB 3500: GOTO 235 230 GDT0 255
235 POKE PP, 32: XP=P: YP=P:PP=SP+64*YP+XP:POKEPP,240
240 IF PEEK(DI) $=32$ THEN POK E D1,96
245 IF PEEK(D2)=32 THEN POKE D2,96
250 IF PEEK(D3)=32 THEN POKE D3,96
255 IF M THEN 150
260 IF $\operatorname{FNR}(100)<1$ THEN M $=-1: E U=\operatorname{FNR}(60)+1: X M=25: Y M=12$ 265 GOTO 150

1000 FOR $1=1$ T0 240: POKE PP.I: NEXT: IF FNR(10)-3 THEN CT=CT +1 : 60101000
$1005 \mathrm{~B}(1)=\mathrm{B}(1)-\mathrm{tU}$: If $\mathrm{B}(1) \mathrm{a} 1$ THEN 1035
1010 POKE PP, 32: IF Cr $<=2$ THEN M $\$={ }^{\prime}$. . IT GOT YOU ...": GOSUB 3000 1015 IF Cr >2 THEN M $\$={ }^{\prime}$ ", AFTER A GREAT BATLLE - IT GOT YOU GOSUB 3000
1020 FOR X=1 10 2000: $\operatorname{NEXT}:$ MS $\$=S 7 R \$(1 N T(B(3)+B(2) / 100)$: GOSUB 3500
1025 M $\$={ }^{-1} \ldots$ Y YOUR FINAL SCORE IS"+MS $\$+"$ POINTS . . COSUB 3000 1030 PRINT: PRINT: PRINT: END
1035 MC $=0: C I=0: B(3)=B(3)+1:$ COSUB 3500 : POKE MP $32: M=0$: RETURN 1500 FOR I $=1$ TO LEM (M): POKE S +1 , ASC(MID $\$$ M $\$, 1,1$): NEXT: RETURN

3000 FOR I=54219 70 54269: POKE L.10: NEXT: $\operatorname{L=LEN(M)} \$$
3005 FORI $=1$ TO L: POKE(54244-L2) 1 I. ASC(MID $\$(M \$.1 .1)$): NEXT: RETURN

3500 FOR I-54219 TO 54269: POKE 1.10: NEXT
3505 M $\$=S T R \$(\mathbb{B}(2))+\cdots: S=53396$: GOSUB 1500
$3510 \mathrm{M} \$=\operatorname{STR} \$\left(B(3)+{ }^{+":} \mathrm{S}=53432\right.$: \cos UB 1500

$3520 \mathrm{M} \$=\operatorname{STRS}(\mathrm{NT}(\mathrm{B}(1)))+\cdots ": S=53332: \operatorname{GOSU8} 1500$ 3525 RETURN

5000 MC=MC $+1: M P=S P+64^{*} Y M+X H:$ IF $M C-100$ THEN $M=0:$ MC $=0$
POKE MP 32: REYURN
$5005 \mathrm{U}=\mathrm{XH}: \mathrm{V}=\mathrm{Y}: \mathrm{X}: \mathrm{XX}=$ iNT(SGN(XP-XH)$\left.)^{*} \mathrm{FNR}(S K)+5\right)$
5010 YY= $\operatorname{NTT}\left(\right.$ SGN $(Y P-Y M){ }^{\circ}$ FNR(SK) +.5)
5010 IF XX=1 THEN $\mathrm{U}=\mathrm{U}+1$: GOTO 5035
5020 IF $X X=-1$ THEN $U=U-1$: GOTD 5035
5025 IF $Y Y=1$ THEN $V=V+1$: GOTO 5035
5030 IF $\mathrm{YY}=.1$ THEN $\mathrm{V}=\mathrm{V}-1$
5035 POKE MP. $32: W=S P+64 * V+U: W W=$ PEEK (W)
5040 IF WW $=32$ OR WW=96 THEN XM=U: YM=V: COTO 5055
5045 IF WN $=240$ THEN 1000
5050 RETURN
$5055 \mathrm{MP}=\mathrm{SP}+64 * \mathrm{YH}+\mathrm{XH}$: IF EU $=80$ THEN POKE MP. 252: RETURN
5060 IF EU <80 AND EU >30 THEN POKE MP, $181:$ RETURN
5065 POKE MP.243: RETURN

600 IF B(0) OTHEN 6010
6005 M $\$=-\quad$. . YOU DONT SEEM TD HAVE ANY . . ": GOSUB 3000: RETURN $6010 \mathrm{BO})=\mathrm{B}(0)-\mathrm{I} \cdot$ IF ABS $(\mathrm{YM}-\mathrm{YP})<3$ AND ABS (XM-XP) 6 THEN 6020 6015 M $\$=" \ldots$. . MISSED . . .": GOSUB 3500: RETURN
$6020 \mathrm{B1}=\mathrm{PEEK}(\mathrm{MP}-64): \mathrm{B} 2=\mathrm{PEEK}(\mathrm{MP}+64)$: B3-PEEK(MP-1): $B 4=$ PEEK $(M P+1)$
6025 FOR S $=100$ TO PEEK(HP): POKE MP.S: POKE MP $+64, S$: POKE NP-64.S 6030 POKE MP +1 ,S: POKE MP-1.S: NEXT
6035 POKE HP-64,B1: POKE MP+64,B2: POKE MP-1,B3: POKE MP $+1, B 4$
$6040 \mathrm{HP}=\mathrm{FNR}(30): \mathrm{EU}=\mathrm{EU}-\mathrm{HP}$: IF EU: >1 THEN RETUIN
6045 POKE MP $32: \mathrm{M}=0$: $\mathrm{HC}=0: \mathrm{EU}=0: \mathrm{B}(3)=\mathrm{B}(3)+1:$ GOSUB 3500 : RETURN

7000 IF $2=$ D1 THEN T $=0$
7005 IF $2=02$ THEN T=1
7010 IF $Z=D 3$ THEN $T=$?
7015 IF RC(T)=0 THEN RETURN
7020 ON RC(T) GOYO 7025, 7030, 7035, 7040, 7045, 7050, 7055, 7060.
7065, 7070
7025 GOSUB 7075: RETURN
7030 GOSUB 7090. RETURN
7035 GOSUB 7080: RETURN
7040 GOSUB 7085: RETURN
7045 GOSUB 7090: G0SUB 7075: RETURN
7050 GOSUB 7090: GOSUB 7080: RETURN
7055 GOSUB 7090: GOSUB 70B5: RETURN
7060 GOSUB 7090: GOSUB 7075: GOSUB 7080: RETURN
7065 GOSUB 7090: GOSUB 7075: GOSUB 7085: RETURN
7070 GOSUB 7090: GOSUB 7080: GDSUB 7085: RETURN
$7075 \mathrm{EL}=\mathrm{FNR}(50)^{*} \mathrm{FNR}(2)+1$: FP=FNA(T); POKE FP.182: RETURN
7080 SL $=$ FNR $(5)+1: S E+F N A(T):$ POKE SE,245: RETURN
$7085 \mathrm{GL}=\mathrm{FNR}(50)$ *FNR(2)+1: GP=FNA(T): POKE GP.4: RETURN
7090 IF H THEN RETURN
$7095 E U=F N R(50)^{*} F N R(2)+1: Y l=\operatorname{INT}((S P(T)-S P) / 64): M=-1$
7100 YH $=Y 1+F N R(4)+1: X M+(S P(T)-S P)-Y 1 * 64+F N R(11)+1:$ RETURN

8000 MS =CHR \$(12): GOSUB 8150
8005 MS $\$=$ "DO YOU WANT INSTRUCTIONS?": GOSUB 8150: $X=$ USR (X)
8010 IF PEEK(531) 89 THEN 8060
$8015 \mathrm{M} \$=$ CHR $\$ 12)$ GOSUB 8150
8020 FOR I=1 TO 15: RFAD H \$: GOSUB 8150; NEXT
8025 POKE 54221.32: $X=$ USR (X)
$8030 \mathrm{M} \$=$ CHR $\$(12)$: GOSUB 8150
8035 FOR $1=1$ TO 10: READ ${ }^{\text {H } \$ \text { G GOSUB 1850: NEXT }}$
8040 M $\$=$ ="TREASURE -"+CHR $\$ 4$): GOSUB 8150
8045 M\$ ="FOOD -"+CHR\$1B2): GOSUB 8150
$8050 \mathrm{M} \$="$ "SPELLS $-"+$ CHR \$(245): GOSUB 8150
8055 M $\$=$ "THINGS $\cdot+$ CHR $\$(243)+",+$ CHR $\$(181)+", "+$ CHR $\$(252)$:
GOSUB 8150
8060 M $\$=" D 0$ YOU WISH AN E-EASY OT H-HARD GAME?": GOSUB 8150
$8065 \mathrm{X}=\mathrm{USR}(\mathrm{K})$: IF PEEK(531)=69 THEN SK=2: RETURN
8070 IF PEEK (531)-72 THEN SK = 1: RETURN
8075 G0T0 8065

8150 PRINT TAB $(24-L E N(H) \$) / 2)$ HS: RETURN

8500 DATA MINI VENTURE. . ${ }^{*}$
8050 DATA The object of this game is to survive!
8510 DATA" ". You are trapped in a maze of caves that are
8515 DATA inhabited by THINGS! The caves also contain 8520 DATA TREASURE and FDOD, as well as SPELLS which are
8525 DATA quite effective against the things. Fighting
8530 DATA and carrying the gold drain your energy
8535 DATA so collect as much food as possible.
8540 DATA" ". Io collect the food etc move your man onto it,"
8545 DATA " ". Press any key to continue
8550 DATA The following keys are used to move around -
8555 DATA" ", 1 - to move up, 2 - to move down, 3- to move left
8560 DATA 4 - to move right. " ". Press 5 to spell blast the things
8565 DATA " ". "The following symbols are used ."

9000 FOR $1=0$ TO2: FOR J $=0$ TO 12 : PDKE $S P(1)+\mathrm{J} .128:$ POKE SP(I)+J+384.135: NEXT
9005 FOR K=SP(I)+63 TOSP(I)+32I STEP64: POKE K. 143 :
POKE K $+14,136$: NEXT K, I
9010 FOR I +53729 TO 54241 STEP6A: POKE L143: POKE $1+6,136$ 9015 IF $1=53921$ OR $(1+6)=53927$ THEN POKE 1,32 : POKE $1+6,32$ 9020 NEXT
9025 SP $=53853$: FOR I=0 T0 3: POKE $S P+1.128:$ POKE $S P+11+1.128:$ POKE SP + $128+1.135$
9030 POKE $S P+139+1,135$: NEXT
9035 S=210: POKE 53671.S: PDKE 53991,S: POKE 53980,S
9040 $\mathrm{S}=20 \mathrm{~g}$: POKE 53852.S: POKE 53863.S
$9045 \mathrm{~S}=208$: POKE 53857.S: POKE 53868.S
9050 S=207: POKE 53665.S: POKE 53996.S: POKE 53985.S
9055 S=96: POKE D1.S: POKE D2,S: POKE D3.S
9060 S-161: POKE D2-1,S: POKE D2 +1,S: POKE D2-2,S: POKE D2+2,S
9065 S + 10: POKE 53740.S: POKE 53724.S: POKE 53675,S: POKE 53661.S 9070 RETURN

ADD A PROFESSIONAL KEYBOARD TO YOUR ZX 81

No de-soldering necessary - just plug in.

- Full travel keyboard as used by international computer and terminal manufacturers.

"All-you-need" easy to assemble kit comprises:
One jiece 47 key keyboard module fitted but not soldered to doublesided printed circuit board; connectors; simple plug-in flexible cables; screws, mounting feet and legends. Two-part keycaps with buttons pre-assembled on keyboard and clear protective clip-on caps for fitting after legends have been positioned. Comprehensive assembly instructions supplied with each kit. Allow 28 days for delivery.

FRBE wer
1.8 PPower supply \& 10.20
with withever
atom ACORN IMMEDIATE DELIVERY

ATOM 8K ROM-2K RAM		£149+VAT
ATOM 12K ROM-12K RAM PRINTER - FULL GRAPHICS		£239+VAT
		£185 + VAT
APPLE		£695 + VAT
TRS-80	MODELI	£251 + VAT
	MODEL III	£520 + VAT
	64K MODEL II	£2,173 + VAT
VIDEO	GENIE	$\mathbf{£ 2 9 9 + V A T}$

PLUS FULL RANGE OF PERIPHERALS SOFTWARE AND ACCESSORIES

GREEN SCREEN MONITOR
$\mathbf{5 8 7}$ + VAT
EPSON MX80 F-T
$\mathbf{5 3 9 9}+$ VAT
Full support given so that you get $\mathbf{1 0 0 \%}$ benefit and enjoyment from your competition
Authorised Service Centre for all the above Computers.
EMPRISE COMPUTERS
COLCHESTER (0206) 865926 58 EAST STREET, COLCHESTER

FQRALTACORT ALOM OWNERS

PROGRAMMER'S TOOL BOX
A packed 4 K EPROM (fils Utility Socket) containing:
1200 BAUO CASSETTE OPERATING SYSTEM
Visible Load Routine
PLUS -TRACE (X)
$\begin{array}{ll}\text {-STEP } & \text { - single step execution } \\ \text { FIND } & \text { - any string of chars. in progran } \\ \text { VAR } & \text { list variables }\end{array}$
VAR \quad list variables
LVAR
AUTO X Y
-automatic line numbering (any stant. any step)
OELETE X to Y
HEX
IHEX
PLUS Additional

- any range nt line nos.
-Hex and Ascii memory dump
- Hex Oump in instruction fornat

BASIC statements
REAO, DATA\& RESTORE
KEY $X \quad$ - scans keyboard-input to variable INKEY SX - scans keyboard-iuput to string variable
IF . THEN ELSE
CURSORX. Y - position cursar as required
ON ERROR
BEEPX. Y - sound a note-any duration, any pitch
ZERD - zemas all basic variables
$\mathrm{POP} \quad$ - close out sub routine
STOP - useful te bugging instruction
WORKS WITH ANY MEMORY SIZE! GREATLY ENHANCES EXISTING ATOM
FACILITIES. DETAILED DPERATING INSTRUCTIONS SUPPLIEO.
Real Value at $E 24.50+$ VAT \& $25 \mu \mathrm{P}$ \& P (Sae for details \& cat) (state Atom)
NASCOM MAGAZINE "MICRO-POWER" please add 65 p per copy - other overseas add $£ 1.05$ per copy.
$\star \star \star$ SPMCLAT OMF卫R $\star \star$

DEDUCT £1/CASSETTE WHEN ORDERING

 TWO OR MORECHESS (12K) AT LASTI! M/C code + mode 3 graphics. Look ahead up to 8 moves. Offensive, Normal or Delensive play. 10 sub-levels. Casting. "En Passant" by plaver. Rejects illegal moves. Take back facility. Action replay with with take over. Set up problem games. This is the best Atom chess game. MODE 4 VDU ($3 \mathrm{~K}+6 \mathrm{~K}$ gr) Mix text with mode 4 graphics. 224 chars . ncl. upper \& lower case Modify characters. f8.95
MICRO-BUDGET Personal Finance (12K) Review \& analyse income \& expenses. Ideal

for budgets \& cash flow.
$\mathbf{8 B . 9 5}$

for budgets \& cash low.
ASTRO8IRDS (12K)-incredible GALXIAN type program, with fantastic sound effects!
Screaning missiles. swooping bird-men. High score display. \quad f8.95
LUNAR LANDER (12K) superb version of arcade game incl. long \& short fange scans.
limited fuel supply.
f8.95
INVADER FORCE (12K) 4 invader iypes, mother ship, great sound, hi score, 6 skill levels.
Terrific version. $\mathbf{f 8 . 9 5}$
3D ASTEROIDS ($5 \mathrm{~K}+2 \mathrm{Kgr}$) -steer through the rolling, hurting asteroids. Excellentreal
life yraphics.
MARTIANS $(12 K+V I A)$-use your force field to stop then landing. Be ware the imposters.
Needs quick reactions.
ALIEN MAZE ($5 \mathrm{~K}+2 \mathrm{~K}$ gr)-escape the 30 lahyrinth before the Alien tracks you down.
$£ 5.95$
HI-STATS $\{12 \mathrm{~K}+\mathrm{fl}$.pt|-statistical analysis \& graphicalrep. offile of input values. Many
options.
options.
DEMON DUNGEON (5 K) lind the treasure, the way out \& escape the demonds f6.95
DAMBUSTERS $(3 \mathrm{~K}+2 \mathrm{~K} \mathrm{gr})$-realistic bonbing raids, bouncing bomls, ack-ack etc.
SUPER RACE-TRACK (12 K)-draw your owirace-track \& race against the clock, steering
\& accelerator controls.
£4.95
EDIT (5K) f6.95 CONDENSE (4K) 55.95 MAZE-BALL (12 K) $\mathbf{5} 4.95$ SPACE STORM (4K) $£ 4.95$ REVERSI ($5 \mathrm{~K}+\mathbf{3 K} \mathrm{g}$) $£ 5.95$.
Extra MEMORY 2×2114 Low power chips
£3.75

HOME BUSINESS PROGRAM

ASSIGNMENTS FOR＇DIM＇STATEMENTS
DIM A（31）
A（1）－Input for options
A（2）－B．S．savings balance
A（3）－B．S．interest rate
A（4）－B．S．monthly payment
A（5）－B．S．Withdrawals
A（6）－B．S．Monthly interest
A（7）－B．S．Total interest
A（8）－B．S．Total Withdrawals
A（9）－B．S．Total payments
A（10）Bank－Bal
A（11）Expenditure
A（12）Salary
A（13）ins Payment
A（14）Total expenditure（month）
A（15）Total Pay
A（16）B／F from 1981
A（17）Total（B／F＋Total pay）
A（18）Expenditure
A（19）Monthly－Bal
A（20）Current－Bal
A（21）Total ins payments
A（22）Total Bal．
A（23）Remainder Spare DIM B（10）
B（1）Month number（for B．S．program）
B（2）Year number
$B(3) \quad$ Previous year number
B（4）Month number（Bal．sheet）
$B(5) \quad$ Etc．Spare
FRR ZXBI $16 K$ URY USEFUL PROGRAM，
THAT KEEPS A DETATLED RECORD OF
YOUR BANK BARANCE EXXPENDITURE， WILL ALSO GIUE A MONTHLY，ANNUMI． BILLANLSEOGTUE O MONTHLY ANANMIS HREN REDUITED．
DTM STRTEMENTS ARE $\because S E D$ AND THE LENGTH GFF ARRRY CAN RE ADD ONCE THE PROGRAH HAS REEN PLIT INTO MEMORY，FOR，THE FIRGT TIME， THE COMMAND＇RUN SHOULO BE USED TO RESERUE THE AREAS OF MEMORYE DATA HAS BEEN LOADEDAUSE ROTOTO TERE INDEX TS ERESENTED，AND NUMEERS ${ }^{I}$ TO ？CAN NOW BE TMPUT PROGRAM．
BUILDING SOCIETY
SELECTED FROM 1 OR OR 5 ．AMOUNTS
 SERESULTS SHOUN OR PROGRAH MAY

PROGRAM RUN．
THIS WTLL：SHOL MONTH NLHEER CALCULATE INTEREST，AF GALANGE，
INTERESTH NHMEER SMOUS 2 OR 8 THE TOTAL INTEREST TE TESETITO SOCIETY PaYOUT，WHICH BCEUME
THICE YERARLY $A R E$ TAKEN CRAE OF FROM EANK BALANCE PROGRAM．

THIS PROGRAM TS ONLY THTENDED TO BE RUN ONCE MONTHLY EITHER OE MADE，OR FRUM BANK RALANRE

BALANCE SHEET
SELECTED FROM 3 OR 7 ．
3－RUNS FROGRAM－SMOUS HONTH NO．
TOTAL SALARY，TOTAL EXFEHEITLIRE
AFTEF THE TWELTH MONTH YEAR
NUMEERS RRE TNCREASED GY ONE GND FGIAL PREUSOLIS YCHM，MOBHTH NUMBER REMRINS AT ZEROA FOR RESBLTS BUT REUERTS TO ONE IF
PROGRAM IS RUN．
ERCH TIHE PROGRAM IS RUN，
 FOR THE NEXT MDNTH．
THE PROGRAM TS INTEMDED JO EE RESULTS CRN BE SÉEN ANYTIME．
BANK BALANCE
SELECTEDFROM ${ }^{2}$ OR ERG INPLTS SOCTETY PAYMENTS SANB INGADE YNE TF B S．PAYMENT IS MAR ME R MU4F OCCURS TOABASEPROGFAM FML PROGRAM IS RUN AS AND UHESH E－RESULTS ONLY．

INCEX
CHOOSE PROGFARM REDUIREG

MONTH NUMBER
MONTHLY INT＝e， 2 SJE12T

TOTAL HITHDRBURLS $=0$
SELECT OPTION REQUIREL
SELECT OP

BAL $=1 E$ SE．
TOTAL EXF
TOTHL
FHY $=$ O
SELECT OFTION REGULFEO

$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 35 \\ & 40 \end{aligned}$	REM＂HOME BUSIUESE＂ OTM A3I DIM（1Q） CRS PRINT＂HOME BUSINESS FROGRA
M＂	
50	PRTNT TRE 18；＂INDE：
65	PRINT ARB 10，IMDE．
70	PRINT＂CHOOSE FREGRAIS REGLI
98	PRINT
90	PRINT TAB 3 ；＂1
190	PRINT TAB a＂z
130	PRINT TAB a；${ }^{\text {PRIN }}$
130	PRINT
150	PRINT
150	PRINT TOB 8，＂S tuns＂
170	
180	
190	INPUT A（1）
200	
210	
22\％	IF 日［a］$=3$ THEW GaTa fring
230	IF A（1）＝d THEN EOTO 1278
240	IF R（1）－5 THEN EOTO SES
250	IF A $13=5$ THEN ROTO ETE
260	IF $A(1)=7$ THEN EOTL 1975
270	CLS
280	PRINT TAB 8：＂EFFr＂
296	PRINT＂BHL＝＂；${ }^{\text {PIE：}}$
300	PATNT＂TNPLT WITHDAPIxALE＂
310	TNPLT A（5）
320	CLS
330	LET A（2）＝A（2）－¢（Ex
340	
345	PRINT TAB 8；＂NER＂
350	PRINT＂BAL $=$＂ 月（2，$^{\text {a }}$
360	LET A（S）x ©
0	
370	
E 39	PRINT TAS 8；＂2 E
40	INPUT A（1）
410	IF A （1）＝1 THEN ROTO 27a
420	IF $A(1)=2$ THEN EOTO 35
460	LET $9(3)=$ Q0e7 ${ }^{\text {S }}$
470	
480	
490	
495	LET B（1）＝ $\mathrm{B}^{(1)+1}$
500	LET $A(9)=A(4)+9(9)$
505	IF B $113=2$ OR E（13＝8 THEN LE
	IF $B(1)=13$ THEN
	IF $5(1)=13$ THEN LET
5	IF $\mathrm{F}(4)$ ） 6 THE B BOTO TBL
538	PRINT TAR a；＂¢te
535	
540	HRINT＂MONTHL＇\％INT $=$＂，由 ¢ 6,
550	PRINT＂TOTAL INT＝
559	FRINT＂EGLE＂； HiP？$^{\text {Pr }}$
570	PRINT＂TDTAL WITHERAMSAL $5=$＂
$A(8)$	
590	PRTNT USELERT OPTTVN REMUTE
800	PRINT＂SELECT GFTIOM REUWIM
610	PRINT TAB $8, \cdots 1$
620	PRINT TAE $3,{ }^{*}$ 己
503	INFLIT A（1）
648	
650	IF A（I）$=2$ THEN GLTO 35
706	CLS
710	PRTNT TAB a；＂int
7e0	
730	FAINT＂＇INPLT EXP＊
740	TNPLT 9 （11］
750	
760	20．Lis
770	IF Ar4］， 0 THEN EGTB＊Eis
780	FRINT＂INPUT EHLART＊
79	TNPLT ArtE！
300	PRINT＂INPUT SUM4＂
810	INPUT 9 （13）
820	LET A（14．）＝A（14）＋¢（11）
838	
846	
350	
－914	－ 1 （13）
860	LET A（4）－
870	L．ET $\rightarrow(11)=0$
875	CLS
880	PAINT TAB
890	PRIMT＂BAL＝
968	PRINT＂TETAL EXP＝＂，里tici
910	
920	PRINT

TECHNICAL GRAPH PLOTTING WITH THE ZX-81

the maximum value of X in the range of interest and estimate (orevencalculate with our $\mathrm{ZX}-81$!) the maximum value of Y over the range. We then give Y 3 a value equalto, or higher thanthis maximum Y , noting that

The ZX-81 PLOT instruction is extremely convenient and saves having to write complex plotting routines. Nevertheless, in order to construct a technically useful graph some care has to be taken in drawing the graph paper and in scaling and placing the plot. Additionally, because of the size of an individual "pixel", there is a minimum useful computing interval which will avoid placing them on top of one another and so save computing time.

It is not suggested that the programs offered here are unique, just that theydo the job neatly and form a basis, perhaps, for further enhancement using high resolution graphics. For now, however, it is assumed that the reader is content to use the keyboard facilities of his ZX-81.

I have chosen the plus sign with which to draw the graph paper. Any other symbol, or combination of symbols, seems cumbersome by comparison. The disadvantage, although easily overcome, is that a computed point cannot be plotted at a graticule intersection, because, as the ZX81 handbook says, a screen element is divided up into four pixels "like a Battenburg cake". To recapitulate this particular point, the $\mathrm{ZX}-81$ allows us the use of 704 T.V. screen elements each of which can display one keyboard character or four pixels. The graph paper program, lines 10 to 280 , is given on figure 1 . It is straightforward, merely a matter of establishing the graticule and leaving room for scales and titles. Traditionally these are around the edges of the graph and they are drawn so here, if you want a larger graph format there is nothing to prevent you drawing the graticule as large as the screen with the titles and scales inside it.

The program is given in open form, you will close it by entering your own titles in lines 210,230,250 and 280, and choosing values of X1 through X5 in line 190 . Based on these X values you will also choose Y 1 , Y 2 and Y 3 on lines 150,160 and 170 . How this is done now follows.

We are going to plot computed values of the "dependent variable", Y, against the
"independent" (or input) variable X, in mathematical terminology, Y is a function of X. This means that we choose a range of X over which we wish to examine the characteristics of Y, so we place $X 5$ equal to

if Y3 is divisible by 3 and $X 5$ by 5 ，we get nice scales and can complete lines 150，160， 170 and 190 easily．

The calculation and plotting program， lines 290 to 380 ，is a given on figure 2 ，once again in open form．You have chosen the values of X5 and Y3 to insert in lines 320， 330 and 340 ，according to the function underexamination，which itself is placed in line 350．Lines 320 and 330 evaluate two scales，in pixels per unit，on which are based the minimum computing interval（STEP） and the first X value，line 340 ，which ensures that pixels are neither placed on top of each other，nor plotted at graticule intersections．These scales are also used in line 370 to position the plot on the graph paper．

A typical＇ O ＇level quadratic function is plotted on figure 3 as an example，it is shown together with the line alterations required to do the computation．Note that the range of interest of X is zero to 0.5 ，so that 0.5 is the value of X 5 and that the maximum value of Y is 15 ，so $Y 3$ equals 15 ． These numbers are divisible by 5 and 3 respectively so we obtain easy to read scales．The program still draws a graph even if X5 and Y3 are not sodivisible but the scales would be difficult to read from and even to write on the graph paper！

A more elaborate example is shown in figure 4 ，on which are plotted the drag coefficients of three model aircraft with differing wing planforms，as characterised by their aspect ratios．The technicalities of this problem do not concern us here but the basic equation is in line 350，as previously， and you will see that there are two inputs to it，the lift coefficient，CL and the aspect ratio A．To tackle this we use two FOR NEXT loops，the outer one controls aspect ratio and does not need the scales SX and SY，the inner loop controls the X variable， which is now lift coefficient，or CL，and it works exactly like the previous example． Note also the two lines 390 and 400 ，inside the outer loop，which identify each of the three curves by printing the aspect ratio on the graph．

It is not necessary to plot at every possible pixel location，you can arrange to
plot fewer points by modifying the end of line 340，after STEP．Byinserting 2／SX，for instance，half as many points are plotted． Take care，by the way，to differentiate between the letters S and the figures 5 in this part of the program．

Finally，although the pixel is rather a blunt instrument with which to draw graphs，it is certainly adequate to illustrate the main characteristics of mathematical functions and，although the program given is constructed only to draw graphs in the positive quadrant（i．e．both X and Y positive throughout the range）it is hoped that the user who requires it willunravel the system of scaling and placing the plot，so as to allow him to illustrate any function．To have described this in detail would have made the article very complicated，whereas the recipe given for plotting positive functions works with ease．

Figure 2.

QUADRATIC EGUATION

$$
Y=150 * x * *-60 * x+7.5
$$

Figure 4.
DRAG POLARS
ASPECT RATIUS $10,15,2 \pi$

292
255
320
320
330 두
335 F
340 TOR $A=10$ TQ ZQ ETEP 5
145
$1 / 5$
345 LET CL＝X
350 LET CD CO ．Q15＋CL＊＊Rノ（PI＊A）
350 REM PLOT THE REEULTS
370 PLOT $3+5 \times * C L, 5+3 Y * C D$
380 NEXT \times
390 LET $\boldsymbol{1}$ 年＝＂A＂
400 PRINT TAE BU；UAL A
410 NEXT A
420 SLOW

PET SOFTWARE

MAIZE MAN

New ROM Ghosts chase you around THE MAIZE - can you get to the power points to try and dispel the ghosts. Fast action machine code game based on Pacman with a few extra suprises.
£8.95
8K 16 K Versions Old \& New ROM

Sub Commander

This is not an Arcade type game but it is a real time graphics simulation of the commander of a World War II sub. Your mission as commander is to seek out and destroy enemy shipping, both warship and merchantmen.
The merchantmen are not always sitting ducks as Q ships are also encountered but radar, periscopes, hydrophone, etc., with a good visual display enable you to hunt effectively.
Don't forget to contact your supply ship as running out of fuel or ammunition is rather embarrassing to a commander in line for the IRON CROSS.

GOOD HUNTING
32 K and 16 K versions
(New Rom)
Please specify
£13.95

CONOUEROR

A tyrant is sweeping through Europe unopposed.
GORVAN THE TERRIBLE is well named. You have been put in command of the armies which control the few remaining countries of the alliance.
Mere survival will be difficult but your task is to eradicate GORVAN from the face of Europe.
The prize? - fame and glory
To fail? - Gorvan is indeed terrible
A game of tactics and strategy played with excellent graphical representation of Europe.

16K (New Rom)
£12.95

AVALON HILL GAMES

Nuke Ware

Nuclear War between two countries, missiles, fighters, bombers, ABMs, etc.
Planet Miners (1-4 Players)
Compete to claim mining rights for Solar System. North Atlantic Convoy Raider
Sink the Bismark or (if you prefer) the British Convoy. All above TRS80 16k level II cassette at £10.95.

ASTEROIDS.

Fast action Pet version of popular arcade type game 'Asteroids'. All the facilites, Rotate, Fire, Hyperspace, Jump. (OId and New Rom) on one cassette 8 k
£9.95

TRS-80, APPLE SOFTWARE

Are you fed up with games where you just shoot a few invaders or depend on your reactions, then try a whole new world of computer fantasy, a world in which Sorcery and Monsters holds sway, try:

SORCERER OF SIVA

A real-time GRAPHIC adventure

Sorcerer of Siva is a game where you enter a different world where Arnulets, rings, necklaces, sceptres - and - oh, yes, a pair of old boots await you - in the magical mines of Siva.

Enter the dark stilness of the mine, armed with just a dagger and relying on your magical abilities. But beware of the wandering soulless creatures that dwell in the magical mine, guarding every treasure and trap door.

Use your magical powers to slay the bloodthirsty banshee, put an end to the deadly demon, or the goblin waiting to waylay you.

Walk through walls and sealed entrances, cast a spell to heal your wounds, regain your strength or hurl bolts of lightning.
A wizard you are, yes, but watch out for the evil Sorcerer who is waiting to cast his favourite spell-forgetfulness to deprive you of your most valuable magic.

But all is not lost - you may regain a spell or two, or perhaps even one new to you - if you can discover the wondrous touchstones, stone saturated with powers to restore your magical abilities. Be warned too, that not all treasures you might find are true. In experience lies wisdom.
$\mathbf{f 1 5 . 9 5}$ TRS-80 \& V.G. (level II, 16k) cassette
$\mathbf{£ 1 7 . 9 5}$ TRS-80 (32 k TRSDOS), Apple (48 k with Applesoft in ROM)

The Upper Reaches of Apshai . . .
is the first in a series of expansion modules for "The Temple". Horrible monsters lurk in the innkeeper's backyard. Discover the secrets of Benedic's Monastery and the cottage of Merlis the Mage. Who knows what secrets the cellar of Olias holds.

Over 150 new rooms for you to explore.

The Keys of Acheron

For those of you who have succeeded in rescuing Brynhild as the Hellfire Warrior, now have an even more difficult task; Four magical jewels, the keys, each in a different dimension, must be recovered from Kronus the Demon.
Both The Upper Reaches of Apshai and The Keys of Acheron are expansion modules for the Temple and Hellife, you must have these games to play them.

$\mathbf{£ 1 1 . 9 5}$ TRS-80 \& V.G. (Ievel II, 16K) cassette
 Temple of Apshai $£ 16.95$
 Hellfire Warrior $£ 16.95$

SPECIAL OFFER: if you don't have Temple or Hellfire, then purchase both Temple and The Upper Reaches of Apshai or Hellfire Warrior and the Keys of Acheron for just $£ 24.95$ Cass. $£ 26.95$ disk.

Just talking shop

Computers on the Altar in California.

Under the headline, "Why should the Devil have all the best micro's"? It was recently announced that Church Computer Systems Inc. of Sunnydale (Honest! no Kidding), California is now installing modular packaged systems, based upon the Vector Graphic computer, into churches in California.
Software includes, packages for Bible instruction, sermons, membership and attendance records, together with an accounts system for the collections, givings and disbursements. There is also a free magazine based on floppy disc to keep everyone in touch.
It sounds like a good idea, which of course could only have come from California, but I can't help having a laugh. Imagine the computer, housed alongside the altar (with perhaps a terminal in the confessional box) monitoring the transgressions of the flock, tailoring the sermon accordingly and recording its impact by the size of the following collection (the way they do things in California, thats not so far fetched as you might think).
But why should the computerstop there? With a bit of development and perhaps the addition of voice synthesis that magazine, based on floppy disc could actually contain the sermon. Originating on Mount Siniai (or more likely, Beverly Hills!), and descending each week to the gathered congregation, it could even take on the image of a holy tablet putting terror into the flock, and of course recording the appropriate response. (Which this being California, and it being a computer, it does by counting the hard cash in the till at the end of the day). Pretty soon that holy Vector would be the main communication channel to the Almighty, through which all supplications would be passed. Yes Sir, for a genuine, guaranteed reply within 24 hours.

Nippon Gakki enters Micro Market.

Yet another well known Japanese company has entered the microcomputer market. Nippon Gakki, well known in the

West for its Yamaha brand of electronic organs, guitars and other musical instruments, has just launched an integrated home entertainments system based around its own microcomputer. Called the Yamaha Integrated System it comprises, the computer and a range of optional modules which currently include, a video disc player, an automatic piano, a musical keyboard and a range of electronic musical instruments. Available at the moment only on the Japanese market the computer retails at $\$ 4,400$ (about $£ 2,200$) and the piano player at $\$ 1,500$. Youcan be sure they will launch it onto the western markets when they think we can afford these prices.
It seems we will soon be able to compose and conduct a full, simulated, symphony orchestra without getting out of the armchair. I dread to think waht would happen if every house in the street got one. Brahms from those nice folk at number one. Martial music from those dreadful people who have just moved in to number 12. Welsh choral music from the Evan's at number 6, and if that horrible little schoolgirl up the otherend does not get her full ensemble of recorders playing Greensleeves right soon lll go mad.

30 Million Sales Forecast.

The latest survey of the market for personal computers in Japan, producedfor a large Japanese microcomputercompany, forecasts sales of 30 million systems into Japanese homes and businesses by the end of this decade. 30 million! That's one for every 3 Japanese. With such a large and prosperous home market it makes me wonder why they bother with us improverished Westerners.
If there's anyone left who still thinks that half the population lives ona bowl of rice a day they'd get one hell of a shock if he/she visited Japan today.

Low cost Floppies.

Good news for home based disc drive systems. American pioneer of floppies, Shugart, is reportedly preparing a low cost 5.25 inch mini floppy drive for launch within the next few weeks.
It will be assembled by Matshushita in

Japan and is based on the popular SA200 drive.

Quantity prices are estimated to be as low as $\$ 90$ per unit which means they could appear on the UK market at no more than twice this price.

Tandy TRS 88

Tandy are expected to take the wraps off their top secret 16 bit micro any day now. Called the TRS88 it is based on the highly rated M68000 processor chip and should cause quite a stir at the lower end of the micro business. It might even enable Tandy to fend off the strong pressure from Sharp for the number two position in the European market (Commodore is still tops), but not if they live up to form and fail to deliver until the end of the year.

Sharp-Rockwell Contract.

Finally, just to twist the knife in, it has recently been announced that Rockwell Corporation have signed a technology agreement with Sharp of Japan under which Sharp will license Rockwell to use its CMOS low power chip technology. Rockwell employees will be quality control procedures.
The contract comes just 10 years after Sharp signed a similar deal with Rockwell whereby the American company would train Sharp employees in the art of manufaturing its micro circuits. QED.

Time Travel

Readers who followed the serious articies on time travel in the July and August issues of $\mathrm{E} \& \mathrm{CM}$ will be interested to learn that the British Interplanetary Sociery, which numbers amongst its members some very eminent physicists and astonomers, has produced a design for a proton powered rocket which is theoretically capable of gradually accelerating to 600 million miles per hour, and more, thus enabling astronauts to benefit from time dilation effects in order to be able to reach distant stars.

One of the expeditions listed for future explorers is indeed to Barnard's star, as mentioned in the first article. The protonpowered rocket is envisaged to be erected in earth orbit and to consist of enormous sails, many miles across, which are used to capture protons in the universal cosmic radiation. These are concentrated into a beam of highenergy particles which arethen used to provide a constant accelerating force to the huge ungainly looking structure. Over a period of many months the space ship will reach these incredible speeds, and time as measured by the astronauts will slow down to a fraction of that on earth.

Clearly, we do not have the technology to build such a machine yet, but it may well come sooner than the 200 years mentioned in Roger Davies's articles.

Good news for Bubble memory.

A major boost for bubble memory technology has just been received from of all people, British Telecom. They have come to the conclusion that bubbles win out over discs in terms of reliability, performance and maintenance costs.

With their high reputation for specifying only the top grade products, British Telecoms announcement will do much to enhance the image of bubble technology after the denting it took last year when in quick succession Texas Instruments, National Semiconductor and Rockwell all announced they were pulling out of that market.

Plessey Microsystems have designed the bubble memory boards for eventual incorporation in the System X digital telephone exchange we are so patiently waiting for. There will be 18 bubble memory boards in each system X unit and each board has a 1 mega-byte memory built up from 256 K elements supplied by Motorola. Plessey intend to switch over as soon as possible to 1 Megabit elements also supplied by Motorola, with Hitachi acting as second source.

This further re-enforces my prediction made last Oct ober, at the time TI etc were pulling out, that bubble memories will finally replace floppy discs by the end of this decade.

KITS. Including printed circuit boards and assembly instructions.

Name	Price inc.vat (pounds)	```Memory size (000)```	Power Supply Inc.	Case Inc.	Keyboard Inc.	Display Inc.
Sinclair ZX -81	50	1.	no	yes	yes	no
Atom	140	2	no	yes	yes	no
Microtan 65	80	1	no	no	yes	no
Tuscan	270	8	yes	yes	yes	no
Nascom	419	16	yes	no	yes	no
Power-Tran	258	3	yes	yes	yes	no
Compukit	205	4	yes	no	yes	no

Professional Quality Imported Models.
(Note. Printer is not included unless indicated).

Name	Model No.	origin	CPU	Memory (RAM)	DOS	Disc Drive.	Bus	Price (pounds)
Altos A	ACS8000	USA	Z80	208K	CP/M	Winnie	Own	8,195(23)
Al-Micro	ABC 26	JAP	280	64	$C P / M$	$2 \times 5{ }^{\prime \prime}$	own	3.195
Alphatronic	P2	GER	8085	48	Own	5 "	own	1,500
Apple.	II	USA	6502	64	Own	5 "	SS50	3,000
Aristocrat.		USA	280	180	CP/M	2×5 "	S100	4,000
Commodore	Pet II	USA	6502	48	own	5 "	SS50	3,500
Compucorp	655	USA	Z 80	64	CP/M	5 "	IEEE	
Cromemos	2	USA	Z80	64	Own	$5{ }^{\prime \prime}$	S100	
DataGeneral E	Enterprise	e USA			own	$2 \times 5{ }^{\prime \prime}$	own	\$7,195(1)
DMS inc.	DSC4	USA	Z80	512	CP/M	$8{ }^{\prime \prime}$	S100	3,995
Fujitsu	Micro8	JAP	6809	64	UCSD	$2 \times 5{ }^{\prime \prime}$	own	\$2,375
Gnat	10		Z 80	64	CP/M	5 "	Sl00	3,000
Heath	789	USA	280	64	CP / M		Sl00	1,500
HewletPackard	HP85	USA	8085	32	Own	$5{ }^{\prime \prime}$	IEEE	1,935
HewletPackard	HP125	USA	Z 80	64	CP/M	2×5 "	own	4,372(1)
Hitachi	MB6809	JAP	6809	32	OWn		own	1,330
IBM	Sys 23	USA	---		Own	2×8 "	own	\$9,835(1)
Kontron		GER	280	64	KOS	Winnie	own	(2)
NEC	PC8000	JAP	Z 80	64	CP/M	$2 \times 5{ }^{\prime \prime}$	OWn	2,000
North Star	Horizon	USA	280	56	CP/M	2×5 "	Sl 00	4,000
OhioChallenger	r 3	USA	Z80	48	$C P / M$	$8{ }^{\prime \prime}$	own	1.500
Oki	800	JAP	280	64	$C P / M$	2×5	Own	4, 299(1)
Osborne	I	USA	280	64	$C P / M$	2×5 "	own	1,500
Panasonic	JD700U	JAP	8085	56	Own	$8{ }^{\prime \prime}$	own	4,000
Pasca	640	JAP	Z 80	64	CP/M	2×8 "	own	3,300
Sharp	PC 3200	JAP	z 80	64	CP/M	$2 \times 5{ }^{\prime \prime}$	own	3,500
Superbrain.		USA	Z80	64	$C P / M$	$5{ }^{\prime \prime}$	Sl00	1,900
Sord	M223	JAP	280	64	CP/M	$8{ }^{\prime \prime}$	S100	4,000
Tandy	Modit	USA	280	64	CP/M	$8{ }^{\prime \prime}$	own	2,300
Tandy	ModIII	USA	Z80	48	TRSDOS	$2 \times 5{ }^{\prime \prime}$	Own	1.799
Toshiba	T-200	JAP	8085	64	$C P / M$	2×5	own	$3,000$
VectorGraphic	5005	USA	280	64	$C P / M$	Winnie	S100	5,399(23)
VectorGraphic	2600	USA	280	64	CP/M	$2 \times 5{ }^{\prime \prime}$	Sl00	3,345
Xerox	Worm	USA	280	64	$C P / M$	2×5 "	own	\$3,000
**								
(1) Includes m (2) Includes w (3) Multi-user	matrix pri Winchester r, Multi-t	inter. tasking	dise pl capabi	Lus flo	ppy bac	k-up		

This month we examine logic. Many people believe that computers and computer programmers spend all of their time dealing with logic. If you've been following the series you'll know that this is far from the truth. To write programs in BASIC, or any other computer language, does not require any understanding of traditional logic. For the subject of digitalelectronics however things are very different. The design of any digital equipment requires at least an intuitive understanding of logic. BASIC can help with digital electronics because it can evaluate logical expressions the same way it can evaluate arithmetic expressions.

After learning about logic in BASIC it is easy to find many other uses for it apart from helping with digital design - so while programming can help with electronics the practice helps the programming!

Boolean logic

There are many different types of logic but the one that concerns us here is one of the simplest - Boolean logic. Boolean logic is based on the simple fact that a statement is either true or false. We may actually not know if a particular statement is true or false but for boolean logic to work all that matters is that it must be one or the other i.e. true or false are the only possibilities. If this seems obvious to you then don't worry too much because it is!
Consider the BASIC statement $\mathrm{A}>0$.

Does this say "the variable A IS greater than zero"? Suppose A is to set equal to one earlier in the program then $\mathrm{A}>0$ is true, but if we set A equal to minus one then $A>0$ is false. It should be clear now that $\mathrm{A}>0$ doesn't mean that we are saying A IS greater than zero but it is a statement which may be true or false. A statement which may be true or false is known as a Boolean expression. You may be wondering where you could use an expression like $\mathrm{A}>0$ well the answer should be obvious:
10 IF A $>$ OTHEN PRINT "A IS BIGGER THAN ZERO" We have been using booleanex pressionsall the time within IF statements. The general form of the IF statement can now be expressed as
IF boolean expression is true THEN statement
The boolean expressions that we already know are all based on the relational operators introduced when we dealt with the IF statement. To recap:

$=$ equals	$A=B$
$<$ smaller	$A<B$
$>$ greater	$A>B$
$<>$ notequal	$A<>B$
$<=$ smaller or equal	$A<=B$
$>=$ greater or equal	$A>=B$

Our new understanding of these means that each is a statement which mayeither be true or false. Notice that the sign " $=$ " has two meanings in BASIC. It can be used to mean signment i.e. LET $A=0$ or it can be used as a relational operator i.e. IF $A=0$ THEN etc. In the first case A. IS set equal to 0 and in the second A is unchanged and instead a true or false result is returned. Also remember that the relational operators can be used to compare strings as well as numbers - see BB part 4.

Boolean operators

So far boolean expressions have given us nothing but a reinterpretation of old facts. If this was all there was to Logic it would hardly be worth the bother!

Consider the following short program:
10 PRINT "INPUT TWO RESISTANCE VALUES";
20 INPUTR
30 INPUTS
40 IF R<OTHEN PRINT "RESISTANCE MUST BE BIGGER THAN ZERO!"
50 IF $S<0$ THEN PRINT "RESISTANCE MUST BE BIGGER THAN ZERO!"
rest of program
At lines 40 and 50 we test to see if the two resistance values are smaller than zero. If you examine these two lines carefully you might think that there is some repetition because the same thing happens if either resistor is less than zero and if both are less than zero the message is printed twice. As a simple exercise the reader might like to try to change the program to print the message just once no matter what. From a common sense point of view it would be nice if we could write in place of lines 40 and 50 : 40 IF $R<0$ OR $S<0$ THEN PRINT "RESISTANCE MUST BE BIGGER THAN ZERO" The part of the statement between the IF and the THEN is still a boolea nexpression, that is it can either be true or false. To see that this is the case we can examine what makes the IF statement carry out the statement following the THEN.

$\mathbf{R}<0$	$\mathrm{~S}<$	THEN taken
False	False	No
False	True	Yes
True	False	Yes
True	True	Yes

By examining the above table it should be clear that the THEN course of action is taken if either of the two inequalities is true and this is of course what we mean by OR! Going back to the definition of the IF statement the boolean expression $R<0$ OR $S<0$ must be true if the statement following the THEN is carried out. We can now write the earlier table as:

$R<0$	$S<0$	$R<00 R S<0$
False	False	False
Faise	True	True
True	False	True
True	True	True

This is called a truth table and it is one of the basic ways of understanding logic expressions. Apart from understanding a logic table we have also discovered our first logical operator - OR. It is worth pausing for a moment to think about the similarities between what we have just done and the more familiar evaluation of arithmetic expressions. In arithmetic we write A+B and everyone understands that for various values of A and B we could work out the result of $A+B$. We could write down an "arithmetic table" listing all the values that A and B could have and the result $\mathrm{A}+\mathrm{B}$. This would take rather a longtime however as that number of values that A and B can takeon is infinite! (i.e. $0,1,2,3,4,5$. evenif we only want to work with whole numbers.) In case of logical expressions we don't have the sametrouble as each variable can only take on two values - true or false - and wecan write the truth tablefor AOR B very easily.

Logical variables

At the end of thetast section we introduced a new idea that deserves further mention. Going back to our analogy with arithmetic, the two values, true and false, are logical constants in the same way $0,1,2,3,4, \ldots$ etc are arithmetic constants. It would be nice if BASIC provided us with logical variables that we could set equal to logical constants e.g.

$10 \mathrm{~A}=$ TRUE

20 IF A THEN PRINT "A TRUE"

You may find the above program difficult to read and it may look a little strange, but you should be able to understand what it's getting at. The variable A is a logical variable, it can only store the values true/false, and at line 10 it is set equal to the constant true. At line 20 the IF statement evaluates the boolean expression A and finds that it is true so the THEN is taken.

The trouble is that most BASICs do not have logical variables so this explanation is not exactly correct. It is however correct in spirit as we shall see. Although the two values that a boolean expression can take on are usually called true and false, these
names are entirely arbitrary. We could call them "plink" and "plonk" or anything else without altering boolean logic at all. More to the point we could call them 0 and I and use ordinary arithmetic variables to hold logical values! This is the method used by most BASICs. The only extra complication is that not everyone can agree on 0 and 1 and someuse0and -1 or- 1 and +1 etc, etc. The differences are irritating but not too important. A brief summary of how the different BASICs handle Boolean logic can be seen in table one.
(The "full evaluation range" column will be explained later.) For the rest of the article we will assume that 1 is true and 0 is false. With this decided our earlier program becomes.
$10 A=120$ IF A THEN PRINT "A TRUE"
It is now possible for us to use the computer to produce the truth table for OR.
10 FORI-0TO 1
20 FOR J = 0 TO 1
30 PRINT I;" "; J" " ; I OR J
40 NEXT J
50 NEXT I

Logical Operators

We arrived at our first logical operator OR by appealing to common sense. It would be possible to continue to apply common sense and derive the other oftenused logical operators, but to save time and avoid tedium the following BASIC program will print truth tables for OR, AND and NOT:
10 PRINT "TRUTH TABLE FOR AND-OR-NOT"
20 FORI = 0 TO 1
30 FOR J = 0 TO 1
40 PRINT I;" " $\quad \mathrm{J} ;$ " "; 1 AND J;"":I OR J;" ";NOT I
50 NEXT J
60 NEXT I
AND used between two logical variables will result in the expression being true only if both variables are true. NOT is a unary operate (see BB part one) and simply changes the truth value of a single variable into the other value - i.e. NOT changes true into false and false into true. We have
already dealt with OR. These three basic logical operators are all we need to express any boolean logic. At a more practical level AND, OR and NOT are all we need to express any set of conditions for an IF to carry out the statement following the THEN.

Logical operators can be combined into expressions in much the same way as arithmetic operators. The only thing you have to be careful of is the priority of the operators (see BB part 1) most BASICs define the priorities so that, unless you use brackets, NOT is done first then AND and finally OR. For example NOT(I) AND I, NOT $(A<0)$ AND $(B<0),(A=0)$ OR $(A$ $=1)$ AND $(B=0)$) are all valid logical expressions. The rules for manipulating such expressions are not difficult to learn and if you're interested thereare many good books on simple logic that will help you become proficient in manipulating logic. For the purposes of programming, however, becoming an expert logician is more than we require - the computer can always work any difficult logic out for us! For example if you need to know the truth table for NOT(I) AND I then change line 40 in the previous program to:
40 PRINT I;" ";J;" ";NOT(I) AND I
If you're lucky enough to own a ZX8I or use a version of BASIC that has a full VAL or EVALuate instruction, try changing the previous program by:
10 INPUTA\$
40 PRINT I;" ";J;" ";VAL(A\$)
This will allow you to type in ANY logical expression of I and J and print out its truth table because the function VAL works out the expression contained by the string AS. If you want to work out a truth table with three variables all you have to do is add a FOR loop with a variable K and so on for four variable, five . . . until you run out of memory or patience.

Simplifying Pxpressions

There is one thing that a computer cannot do very easily for you and that is to simplify boolean expressions. Sometimes while working out what should go inside an IF
statement you might come up with something like:
10 IF NOT $(A<0)$ THEN \qquad
You might have said to yourself, "If A isn't smaller than zero then . . " and translated "isn't smaller than zero into BASIC as NOT $(A<0)$. There is nothing wrong with this method of constructing IF statements - it's the way we ALL do it - but if you've been programming for a while you notice that NOT $(\mathrm{A}<0)$ is thesamething as $\mathrm{A}>=$ 0 . Put into words "A isn't smaller thanzero" is the same thing as " A is bigger or equal to zero". By making this simple change you can make the program slightly simpler and faster to run. There area whole host of such simplifications that you can make to a complex logical expression but it's up to you to decide if it's worth it. This is very similar to simplifying arithmetic expressions before using them in a program - it's not wrong to use $A^{*} B+A^{*} C$ rather than $A^{*}(B+C)$ but the latter is faster. Weall learn how to simplify arithmetic expressions at school but logical expressions are something else! Fortunately we are saved by the fact that in practice the logical expressions that crop up are fairly simple and can be altered by using some common sense.

Some rules for manipulating boolean expression might be useful however:
Relations

1. $\operatorname{NOT}(A=B)=A<>B$
2. $\operatorname{NOT}(A<B)=A>=B$
3. $\operatorname{NOT}(A>B)=A=<B$

Logic

1. $\operatorname{NOT}(\operatorname{NOT}(A))=A$
2. $A O R(B A N D C)=(A O R B) A N D(A O R C)$
3. $\operatorname{A~AND~}(B O R C)=(A$ AND B) OR (A AND C)
4. $\operatorname{NOT}(A O R B)=\operatorname{NOT}(A)$ AND NOT (B)

The rules for relations are easy enough to understand but the logic ones might be less obvious. The first logic rule says that to NOT something twice leaves it unchanged. The second and third rules are easier to understand if you compare it to arithmetic
$A^{*}(B+C)=\left(A^{*} B\right)+\left(A^{*} B\right) \quad$ both AND and OR can be factorised just like multiplication. The final rule is the most difficult and it is known as De Morgan's law. It is important because it provides the link between AND and OR in that any expression involving OR can be changed into one involving AND and vice versa. This isn't a complete list of rules for manipulating logic but it will see you through most logical problems.

The other logical operators

AND, OR and NOT are all the logical operators that you NEED but sometimes it is useful to give names to often used combinations of them. Moreover, Not
many BASICs offer you more than AND,OR and NOT so it is important for you to know how to make up these more complicated operators.
NOT $(A O R B)=A N O R B$
NOT (A AND B) $=A$ NAND B
(NOT (A) AND B) OR (A AND NOT(B)) = A EOR B
The first two examples are easy, the third, EOR looks impossible! In fact EOR exclusive OR - is one of the most useful logical operators. To find out what it does a truth table helps

A	B	A EORB
0	0	0
1	0	1
0	1	1
1	1	0

Looking at the last column you should be able to see a similarity with the truth table produced by OR. The difference is that EOR is true (i.e l) only when one of \mathbf{A} or \mathbf{B} is trueand OR is true if one or botharetrue.

Tlectronics and logic

At the start of this article it was explained that logic is used in the design (and debugging) of digital circuitry. In this section I will try to explain the connection between programming and hardwarelogic.
Digital circuits are built up from a range of integrated circuits which provide elementary logic functions. For example in the 74 range the 7400 contains four NAND gates. These provide the same operation as our NOT (A AND B) expression did in the last section, except that instead of 0 and 1 representing true and false two voltage levels (5 V and 0 V) are used and A and Bare two inputs to the circuit. So if we have a network of simple logic integrated circuits we can write down a boolean expression to represent them and use a program, based on the one given earlier, to work out a truth table and hence what outputs you get for any input. This is of course much easier than building the circuit.

This idea of translating a piece of simple digital electronics to a boolean expression is the basis of a very powerful technique that can be used to try out any digital design. The reason why we have to extend the method is that most even slightly advanced digital equipment goes beyond "static" logic by using oscillators and pulse generators to "run" the logic circuits. So far we have not introduced a way of generating such pulses, or clocks as they are often called, but it's not too difficult and would make a very interesting project for the reader to tackle.

Jvaluation Range

This section is a little more advanced than the rest of the article so you may want to
skip it until some later time. What happens if you try something like:
$10 A=6$
$20 B=7$
30 PRINT A AND B
So far we have only discussed logical operations involving values like 0 and 1 . What happens if you try ANDing numbers like 6 and 7 depends on the version of BASIC that you are using. Some will treat the numbers as binary numbers e.g. $6=110$ and $7=111$ and carry out the logical operation on each pair of bits in turne.g. bit one of 6 is 0 and bit one of 7 is 1 so the result of ANDing them together is 0 and so on with the second and third pairs of bits giving 110 as the answer. The result of this bitwise logical operation can of course be treated as another binary number and converted back to decimal e.g. 110 is 6 . Any BASIC that works this way will have a largest number that it can deal withand this is listed in the table given earlier under the heading of "full evaluation range".

The ZX81 is very special in its use of logical operations on extended ranges (i.e. other than 0 and 1). If you try:
10 PRINTA AND B
you will find that if B is 0 the result is zero but if B is anything else the result is A. This remarkable feature also works for strings. 10 PRINT A\$ AND B
will print nothing (i.e. the null string) if B is zero and $A \$$ if B is any other value. This is particularly useful if you're trying to fit a program into a $1 \mathrm{KZX81}$ becauseinstead of 10 IF $\mathrm{B}<>0$ THEN PRINT A\$
you can use
10 PRINT A\$ AND B
The other logical operators on the ZX81 arealso special-A OR B is A if B is 0 and 1 if B is anything else, NOT A is 0 if A is not zero and 1 if it is. Neither of these can be used with strings but they are very powerful statements and deserve further study, however this comes under the heading of "very clever programming"!

Conclusion

We have introduced the topic of boolean logic in programming at a fairlysimplelevel (apart from the last section) and you will probably be relieved to hear that it's at the simple level that it's most often used. Using ANDs and ORs should make your programs easier to read and smaller but do take care to check that the logical expressions that you use mean exactly what you want. Logic can sometimes be confusing!

Next month:

More advanced BASIC

by taking advantage of this special offer and we'll also send you a copy of Introducing Microprocessors

 by Ian R Sinclair."Electronics \& Computing Monthly" is rapidly becoming Britain's leading magazine for electronics and computer applications.
In less than 12 months "Electronics \& Computing Monthly" has become required reading for thousands of Engineers, Technicians, Managers, Company Directors, Teachers, University Lecturers and Students plus many other electronics and computing enthusiasts.
The magazine has a unique blend of theory, projects, software and technical features supported by technology updates - science and general features on a wide variety of high technology topics.
If science, electronics and computing are your areas of interest then you can guarantee a good read in "Electronics \& Computing Monthly". Special product features each month will combine interesting articles on a particular product theme with special promotions by advertisers. Special products on offer will beat all others on price. Scopes, digital multimeters and home computers are among the variety of goods which will be available at new low prices throughout the year.

(Normally £.4.50)

Post to:

ELECTRONICS \& COMPUTING MONTHLY

SUBSCRIPTIONS DEPT

(FREEPOST)

76 High Street Daventry Northants NN114BQ.

Please send Electronics \& Computing Monthly for the next 12 issues plus a free copy of Introducing Microprocessors.

I have enclosed a cheque/Postal order for $\mathbf{£ 9 . 5 0}$

Name

Address.

Town .
(Free Post No Stamp Needed)

Fuller FD System for ZX80/81

The Fuller FD System is not a 2×8081 add on' but uses the micro board at the heart of a more powerfull system, allowing the user to expand with the system or stop with a standard keyboard $\&$ case and using existing Sinclair 16K RAM pack etc, either way you only need a screwdriver to assemble the built items, the FD Keyboard simply plugs into the 2×81 which is screwed in position in the FD case, $Z \times 80$ installation requires soldering to the keyboard, we will carry out this work at a fixed charge of $£ 10$. SAE will bring you details of our products. Have your $\mathbf{Z} \times 81$ Kit built by us FREE when you buy The FD Keyboard, Case and Power Supply at $£ 42.95+£ 2.25 p 8 p$

- FD Keyboard Kit $£ 18.95$
- FD Keyboard Built $£ 24.95$
- FD 16K RAM Board $\mathbf{£ 3 9 . 9 5}$
- Above items $+80 p$ p $8 p$
- FD Keyboard/Motherboard add f15.95 to Keyboard price
- FDCase $£ 11.75+£ 1.25 p 8 p$

I To Fuller Micro Systems
The Zx Computer Centre Sweeting Street Liverpool. 2 Phone (051) 2366109 lick $\mathrm{ZX} 80 \square 81 \square$
lick $2 \times 80 \square 81 \square$

Please send me
I enclose a cheque/po for
Name
Address

MICRO-PRINT LTD

59, Church Street, Stoke-on-Trent ST4 1 De Telephone (0782) 48348

BOOKS - BOOKS - BOOKS - BOOKS

ta - Fairchild	50
CMDS Data - Fairchild	£4.50
Voltage Regulator Handbook - National	£3.50
Linear Data - National	£6.00
Linear Applications - National	£4.00
Memory Data - National	£3.50
Data/Conversion/Acquisition - National	£4.50
Interface Data - National	£4.50
Discrete Data - National	f3.00
Microcomputing Interfacing with 8255 C	f6.95
555 Timer Applics. with Exper.	£4.85
Design of Phase Lacked Loop Circuits	£6.95
T.T.L. Cookhook.	f8.25
CMDS Cookbook	£7.75
Modern Digital Communications	f4.20
C.R.T. Controller Handbook	f5. 95
Digital/Logic Elect. Handbook	£4.20
Basic Digital Electronics	$£ 4.75$
Basic Microprocessors and the 6800 (Ron	f10.30
Byteing Deeper into your ZX81	£4.95
Understanding your ZX81 ROM	£8.95
Plus all the usual ZX 81 book. Prices corre add 85 p add 85 p per book postage.	s. Please

Members of the Booksellers Association. Fast Service - 24 hour ordering service. Barclaycard and Access.

My emphasis this month is on practical issues and getting a better understanding of electronics - either through some very sound explanation or through actually building circuits yourself. I also include a children's book suitable for enquiring young minds.

Microprocessors: Your Questions Answered

by Alec Wood, 155 pages, £4.95 Published by Newnes Technical Books, 1982.

I was very pleased to find a book which approaches the subject of micros in such a straightforward and comprehensible way. Alec Wood "has set out to dispel the mystique that surrounds the microprocessor" and he has actually suceeded rather well. The book starts off byexplaining what microprocessor chips are and explains the different types of logic used. This is done with the aid of diagrams that the electronics enthusiast will find easy to understand. The second chapter, about hardware, shows how the different microprocessors are related to one another and introduces other parts of the system that so often remain as lightly dismissed jargon terms which have you wondering which technology they are referring to, such as bus and port! The next chapter deals with software which explains how high level language, such as BASIC, is converted into assembly language, hexadecimal code and machine code. I found the explanations given of machine code and hexadecimal very clear. The chapter on logic explains the logic gates with the help of neatly presented diagrams. The next three chapters cover aspects of computation, there is then a chapter devoted to memory, one to control (covering interrupts and the clock) and one to input and output (dealing with communication with the external world). The final chapter is about further programming techniques and it's still easy to follow! This book has clear presentation throughout and once you've read it from cover to cover you need never be bewildered by microprocessors again.

Oscilloscopes

by IanHickman, 122 pages, £ 3.45 Published by Newnes Technical Books, 1981.
An oscilloscope is a fairly expensive piece of test equipment but a lucky enthusiast may have access to one - at work, at school or through a friend and some will even buy their own. And of course lots of people have a professional interest in scopes. This book will be of interest to anyone who may ever want to buy or just operate a cathode-ray oscilloscope. It is of course possible to use scopes for years without ever understanding the principles by which they operate, but Hickman's book will make the subject more interesting and allow you to make the most of their features. In the first chapter the basic principle of "oscillography", that of displaying a voltage that is varying using twodimensional, or co-ordinate, geometry, is explained. Chapter two introduces the "basic" oscilloscope, presenting its block diagram and explaining its controls. From here a jump is made to the advanced oscilloscope which is considered in chapter three in technical detail. The next chapter examines accessories - probes, cameras, calibrators and graticules. - all fairly briefly. Chapter 5 is about using oscilloscopes and choosing the right equipment for your application - a topic covered further in the next chapter. Many examples of output waveforms are presented. The last part of the book is devoted to how the oscilloscope works. This book is illustrated throughout with photographs and diagrams and covers its subject at an interesting level of technical detail.

Counter Driver and
 Numerical Display Projects, 91 pages, 1980. Electronic Timer Projects, 88 pages, 1981.

both by F G Rayer, £1.95 Published by BernardBabaniLtd.

These books each present a collection of fairly traditional circuits all of which usetag board or point-to-point wiring on perforated board rather than PCBs. In the first one the methods of display covered are nixie tubes (neon), seven segment LEDs (solid state) and minitrons (filament). Rayer omits LCDs which are given no mention at all. The book explains well the principles involved but now that one can buy big chips that do in one the tasks that some of the circuits have been constructed for, it is likely to have limited appeal. However, for someone who wants to learn the fundamentals of drivers and displays or for someone who wants a cheap way of constructing a piece of equipment it is a good, attractively priced book.

When he deals with electronic timing circuits, Rayer presents a variety of simple circuits, some of which can be combined to give fairly complicated ones. LEDs for displays are used in many of the projects so if you've worked through the counter driver volume you'll be able to make use of your experience. The range of applications includes a car trip timer, an audio visual metronome and a darkroom timer.

Computers

by Brian Reffin Smith, 32 large pages, £1.85
Published by Usborne, 1981.
This is the first children's book on computers that l've looked at and I found it more fun than some of the other volumes r've been sent recently. For a start it has brightly coloured illustrations and has more pictures than text on every page.

There are also puzzles, projects and games. Meanwhile it serves its purpose as an introduction to computers, the way they work, the way to give instructions to them and the variety of things a computer cando. "The Usbome Guide to Computers" book brings home to me the fact that the current generation of children are going to grow up taking microprocessors for granted. This book is suitable for youngsters from about age ten - but if theyare your child ren make sure you read it first.

16K SOFTWARE

VIDEO-PLAN (ZX81 only). Performs the functions of an analysis book. Arithmetic functions include addition, subtraction, multiplication. Printer optional.
VIDEO-AD. Rotating display of 16 pages of advertising material. Set-up your own pages and change them as and when required.
VIDEO-GRAPH. Planning and design aid. Create pictures/charts/graphs and store within the program. Save on cassette. Combine pictures like an 'identikit'.
VIDEO- VIEW. Do it yourself teletext. Create pages of data. Store them within the program. Save on cassette. View on demand.
VIDEO-MAP. (ZX81 only). Educational game based on maps. Navigate your plane to its destination. Bomb the target and return to base.
FORCE-FIELD. (ZX 81 only). Animated bombardment game. You control the force-field which protects your city against hostile UFOs.
SPACE-RACE. (ZX81 only). Party game for eight players. Rockets race to build stations in space. Winners gradually take over losers until only one winner remains.
FOOTBALL-LEAGUE. Realistic simulation of an entire season. Every match played and results shown with progressive league table. You give teams ratings for skill, effort, etc.
TEST-MATCH. Realistic simulation of a test match series. Dynamic scoreboard. Give each player your own ratings for skills, technique, etc.
STOCK-MARKET. (ZX81 only). An exciting game of skill and judgement. Buy and sell stocks and shares as prices change in response to world events.
PACK 1 - VIDEO-PLAN + VIDEO-AD.
PACK 2 - VIDEO-VIEW + VIDEO-GRAPH.
GAMESET - VIDEO-MAP + 5 GAMES.

1K PARTY TRICKS (ZX81 only)
 NEW! NEW!

If you don't have a 16 K RAM this set of programs is for you. Ten separate programs - some games, some more serious. All completely original, all ten programs included in the price.

SHOOT
SKETCH
NAME THE DAY Give the date, the ZX81 names the day of the week.
TRAIN For the very young who would like to drive a train.
ONGER-WONGER Watch the ZX81 draw its own pictures and yours.
WEATHER An endless variety of completely UFO Shoot down the UFO before he gets you.
WHO SHOT JR An intriguing test of your powers of detection.
FIELD-GUN
Can you hit the target.
FOLLOW THAT Follow the path traced by the ZX81. NOTE: These programs are not suitable for $Z \times 80$.

NEW THIS MONTH

VIDEO-SKETCH (ZX81 16K only).
Move the cursor to any part of the screen. Draw or rubout as you move it. Mix in text or graphics. Save picture in memory. Save picture sequence on cassette.

Std. @ £7.95.
De-luxe @ £9.95.

NEWS FOR USERS

Those of you who have already voted with your cheque books may be interested in our 'top ten'. These are the best sellers so far:

1. VIDEO-VIEW
2. FOOTBALL-LEAGUE
3. VIDEO-GRAPH
4. STOCK-MARKET
5. FORCE-FIELD
6. TEST-MATCH
7. VIDEO-MAP
8. SPACE-RACE
9. VIDEO-PLAN
10. VIDEO-AD

Surprisingly some of the programs which we rate most highly are well down the list.

We expect our 1 K programs to top this list soon. They are worth buying even if you have 16K.

PRICE LIST

ORDER CODE	Manual	Std.	Lux
SKETCH 81	-	7.95	9.95
PLAN 81	-	7.95	9.95
AD 81	-	7.95	9.95
GRAPH 81	-	5.95	7.95
VIEW 81	-	5.95	7.95
MAP 81	-	5.95	7.95
FORCE	-	3.95	5.95
SPACE	-	3.95	5.95
FOOT	-	3.95	5.95
TEST	-	3.95	5.95
STOCK	1.95	3.95	5.95
PARTY 1	-	-	6.95
PACK 1	-	-	17.95
PACK 2		-	13.95
GAMESET			19.95

Prices include VAT.
Mail order customers add $£ 1.00$ per order. (50 p for manual only). Allow 28 days for delivery.
Std $=$ cassette \& manual. Lux $=$ de luxe boxed sets.

Code	M/S/L	Qty.	Price	Total		
						ORDER FORM
:---:						
See above for codes Your cheque no.						
P. \& P.						
NAME.						
ADDRESS.						

Personal callers welcome during office hours.
Send s.a.e. for further details.

ELECTRONICS ${ }^{2}$ Compuring

FOR SALT

SURPLUS - EX EQUIPMENT 120W $(60+60)$ "Power" amplifiers, case \& controls, vol/bal sockets, smoothing 5 " heatsink boxed, dataflow soldered fibreglass, tested (RRP £25-80p) Simply return this Ad. $+£ 9.95$ (inc). Klifco 1 Regent Road Ilkley LS29 9EA. (illustrated leaflet S.A.E.).

48K SHARP MZ80K. Only 3 months old Excellent condition. Complete with 55 games on tape (worth over $£ 100$). Total package, only $£ 470$ o.n.o. Phone 0215594602.

NEW C90 CASSETTES, low priced at only 35p each. Add $16 \mathrm{p} p / \mathrm{p}$ or $£ 1.50$ for ten or more. J. Hudson, 6 Aysgarth, Great Hollands, Bracknell, Berks.
ZX81 with 16K as new $£ 80$. TR1 $£ 5$. Four Sinclair cassettes, two books £2 each. 5" B\&W television £40. Tel: 01-668 8541

XZ81 KEYBOARD SOUNDER, made from easily obtained components send $£ 3$ for instructions, P.C.B. and transducer or S.A.E. for details to R. Mitchell, 20 Gorse Close, Portslade, Sussex.
VIC-20 BLACK JACK. Play cards against your computer. Superb colour graphics. On cassette only $£ 3.95$. Arcadia Software, 4 Chestnut Avenue, Swansea SA3 5NL.

SEMITRON CRICKLATE LTD. offer a range of Zener, rectifier and avalanche diodes as surplus stock. Power rating 400 MW to 25 W . Each mixed packet has approximate retail value of $£ 30$ and is available at $£ 5.50$, including postage. All devices fully tested to original specifications. Orders above $£ 20$ value postage free. Cash with order please. Buy prime quality product direct from the manufacturer at a fraction of its true value. Semitron Cricklade Ltd., Dept. X1, Cricklade, Swindon, Wilts. Tel: 0793-751151.

ZX81 FLICKER-FREE GAMES. 6 super games plus FREE MENU, each 1 K . All on cassette plus listing, £3. Bobker, 29 Chadderton Drive, Unsworth, Bury, Lancs.
TV TO SCOPE CONVERTER. Amazing easy built unit plugs into TV aerial socket to convert any TV into large screen oscilloscope. Costof all components approx. £12. Circuit \& Plans £3 (or S.A.E. details). J. Bobker, 29 Chadderton Drive, Unsworth, Bury, Lancs.

ZX81 SINCLAIR built perfect including power supply instruction book games tape. £55 01-883-3686. 141 Cranley Gdns. London W103AG.
UK101 EPROM PROGRAMMER as featured in January's E \& C. Programs 2716 (+5 v .) Eproms. Built, including 7.I.F. socket £29.50. Includes software on cassette. Please add £1 p\&p to N.J.Tobin, 8 Kingsfield Road, Dane End, Nr, Ware, Herts.
NASCOM II - 32K RAM, stereo programmable synth, I/O board, programmable graphics, Eprom programmer, 6 slot mother board, assembler (zeap), basic. All in VDU case. Full documentation. Much Software. Guaranteed. $£ 500$ phone Matt Harvey on Dorking 880266.

AS IN SEPTEMBER E.C.M. MAINS WIRING TESTER KIT, £1. Transistor Tester Kit, £2. Please add 20p postage. Bobker. 29 Chadderton Drive, Unsworth, Bury, Lancs.

Send to:-

ECM CLASSIFIED, 67 HIGH STREET, DAVENTRY, TEL: 0327271841

RATES
1-3 insertions 57 per scc $4-11$ insertions $£ 6.50$ per scc 12 insertions 56 per scc 24 p per word (min. 15 words) BoxNo. on application All advertisements in this section must be pre-paid.

CLOSING DATE

25 th day of each month preceding publication date.
Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card (available on request).

ACORN ATOM UTILITY ROM £29.90

The Willow Soltware 4 K Uilitity ROM simply plugs into the spare utility ROM socket in your Atom and provides 18 powerlul new commands and facilities including: Renumber, Fange delete, Find, Auto line numbers. Program compression. Diassembler, True keyboard scanning. Memory dump. Variable dump. Register dump. Keyboard sounder, and much more. The Utilities make the Atom easier to use, and provide a 'toolkit' of facilities for program development in both Basic and Assembler. The ROM Utilities are professionally written and fully tested All standard Alom faciities are unaffected and no textspace memory is used.
Due to increased demand, we are now able to offer the Unifity FOM with full instruction manual at the reduced price of only 229.90 inclusive - post free. Send cheque/PO now for delivery by return of post, or write for furiher details. Official orders and Dealer onguries welcome.

WILLOW SOFTWARE

PO BOX 6, CREDITON, DEVON EX171DL

QWERTONIC

Musically logical keyboard, typewriter layout. Designed in 1882 by Janko, approved by Liszt and Rubinstein.
Send $£ 1.00$ for plans, post-free to Mr . Roche, 71 Elmfield Avenue, Teddington, Middx. TW11 8BX.

ARE YOU BOREDWITH GAMES?

ZX81 16K Home Management Packages. 1. NAMES; Comprehensive address book. 2. BANK; No excuse for being overdrawn. 3. DATES; Never forget a birthday. 4. FREEZER; Checkout your freezer contents. Any 2. $£ 4.95$ Cheques/Postal Orders Payable to:
CULWIN SOFTWARE 7 Penrith Close, Uxbridge Middlesex.

ZX81 TAX

PAYE (81/82) for 1K ZX81
You pay too muchtax then you need someone to tell you how much tax payable \& refunddue to you. This Program does just that. Only $£ 3.95$ (Cassette/L.isting) Only $£ 1.75$ (Listing only) Cheques/P.O.s to T.S. Arunasalam, 51, Downshire Hill, Hampstead, London NW3 IPA

Sharp MZ-80K disk system.

Interface, controller and drives, all complete. BRAND NEW. $£ 595$ inc.

VAT and carriage.
CWO please to:
Lowe Electronics,
Chesterfield Road, Matlock, Derbyshire, DE4 5LE.

- T1E

MAESTRO turns your Video Genie/Tandy TRS80 or Pet 3020 (sound box required) into an impressive music synthesizer!
MAESTRO is not a toy or just another keyboard bleeper program, but a real musical instrument providing hours of funfor everyone.
Send only $£ 9.50$ for your copy of MAESTRO. 24 hour service. TRADE ENQUIRIES WELCOMED.
INTRO SOFTWARE LTD., 6 WOODBINE AVENUE, LEICESTER. Please state machine whenusimis.

POOLS

Goal-average SCORE PREDICTION in 16K Program with 'FORM' and 'POSITION' weighting

Evaluates on relative goal scoring capabiity of competing teams. Resulting factor then weighted for division, home and away performance, current form and placing in division. Prograrn prints out 'Match Factor' for sequence listing and also predicts home and away team score. Reciuires input of 10 figures from weekly published league tables, no stored data or updating needed.
Program includes sequence listing routine, random selection option, calculator for No. of lines in perms andcost. Supplied complete with data sheets for season also booklet of instruction, information and factor explanation. Written in basic for simple user adjustment.
No Guarantees but great fun.
Cassette with complete Kit . . . 56.50 Listing only (500 lines) . . $£ 2.50$ (with s.a.e.\$
c.w.o. to:-

Willden Serv
Maybank.
Yew Tree Lane.
East Sussex.

Kitura
 nnscom-2 Sinituare

Graphical Games Programs
Star Wars*
$32 \mathrm{~K} £ 10.00$
Astrafire
$16 K £ 5.50$
$16 K$

Beam Mo Up Scotty 16 K £5.00 Compukar Dart $8 k$| | |
| :--- | :--- |
| | | Grand Prix

X. Wing Star Battle Alien Bombardmen Speedway
Laser Duel Martian Crosstire
Dodgams* $8 K \mathrm{f} .00$
16 K 5.50 $8 K$
84.00 $8 K 55.00$ $\begin{array}{ll}8 K \\ 8 K \\ 84.00 \\ & \text { 84.00 }\end{array}$ $\begin{array}{ll}8 K & \text { E4.00 } \\ \text { BK } \\ \text { £ } 3.60\end{array}$ BK $£ 3.60$
8K $£ 4.60$

ZX81 16K RAM
Cassette Games to Test Your Skill and Tactics
NASTY INVADERS
Get them before your bosses get you!
NASTY MOUNTAIN
$£ 4.95$
VERY NASTY MOUNTAIN £6.95
Adventures on your way through the Mountain. If thats too easy, try the Very Nasty Game with its 16 Levels of Play

- user program test facility
- prices include VAT and P\&P Cheques/P.O.s to
Giltrole Ltd., Dept EC,
P.O. Box 50, Rugby, Warks. CV21 4DH

EX81 s0IHTWARE

EIGHT IK ANIMATED GAMES including "Defender", "Starwars", cassette $£ 3.95$ or listings $£ 1.20+$ S.A.E. Also 16 K cassette including "Midnight Park", "Grandprix" $£ 3.95$. APY(Software), 33 Kings Copse Road, Hedge End, Southampton.
ZX81 16K/ZX80 4K. Full screen Graphics Games. Fruit Machine. Find The Lady. Craps. Galactic Duel. Compulsively interesting, many features and everything on screen. Excellent value at $£ 5.00$ per cassette/listings. State which - Towers. 16, Oatland Road, Little London, Leeds 7.

ZX81 16K: QUEST - Action adventure. Supermind - a version of Mastermind. Star TrekThe classic game. Reverse - arrange the digits. All on one cassette. No rubbish. Only f5.95. K. Stone 7 Woodside Road, Bickley, Kent.

ZX81 DATA provides read, data and restore statements (integral data values only). £1 listing, $£ 2.50$ cassette. Dccupies 191 bytes. A.N. Wilson, The Vicarage, Whitworth Square, Rochdaie, Lancs. OL12 8PY
ZX81 16K ADVENTURE GAME, on cassette, stretches the memory to the limit. £3 Simpson Software 21 Tuttles Lane West, Wymondham, Norfolk.
16K ZX81 SUPER INVADERS. Machine code sophistication. 54 manoeuvring aliens, saucers, defence bases, on-screen scoring. Dn cassette with graphic HANGMAN and SWAT. £3.50. G.J.Prince, 29 Brook Avenue, Levenshulme, Manchester, M19.
ZX 81 GAMES PACK Six 1 K games. Includes Mad Driver, Alien, Elevate. Only $£ 2.95$. P. Webster, 66 The Avenue, London. M0 2QL.
DARTS CLOCK, Lissajou Snooker, Dog's Cricket, Torpedo, Grand National, Airship, Octopus. ICBM, Wipe Out. 12 games for ZX81 1 K RAM. Cassette $£ 3.90 \mathrm{incl}$. p \& p. P. Sykes, 110 Church Lane, Goldington, Bedford MK41 DAS. ZX81 1K MATHS EDUCATION programs: Ratio, Fractions, Functions, Tables, Estimate. Each at two levels, plus Simon, Sentences. Cassette £3.25. Math-Ed, 20 Wandle Road, London SW17.

ZX81 GAMES

HIGH QUALITY,
LOW COST SOFTWARE (ABSOLUTELY NO RUBBISH) GAMESTAPE 1, for 1 K , only $f 3.95$ 10 Games incl. Asteroids, UFO, etc.
GAMESTAPE 2, for 16 K , only $\mathrm{f4} .95$ Starfighter, Pyramid, Artist.
GAMESTAPE 3. for 16 K , only 55.95 Catacombs A Graphics Adventure.
GAMESTAPE 4, for 16 K , only f 5.95 3D Monster Maze...Unbelievable Graphics Cheque/P.O.s to
J.K. GREYE SOFTWARE

16 PARK ST., BATH, AVON BA 12 TE.

"SCOMPROGS"

ZX 81 SPACE PACK 10 great 1 K adventures ncluding space pilot, alien attack, invaders and voyages return +16 K invaders from £2. 69.
ZX 81 GAMES COMPENDIUM, top selling pack of 20 shooting, driving, word/card games all 1 K and amazing value at just $£ 2.99$.
1 Clochbaraven, Milingavie. G62 7JW.
(sae for delails)
(Canada \$9/tem)

WANTMD

QUALITY PROGRAMS for ZX81 and ATOM wanted. Send S.A.E. for details to P. Bambridge, 56 Ashford Crescent, Enfield, Middx. 30\% Royalties.
URGENTLY REQUIRED BACK ISSUES of Electronics \& Computing Nov. and Sept. 1981. Any reasonable price paid. Tel. Lowick Bridge 201.

2716 EPROM PROGRAMMER OR DIAGRAM, and machine code program. System 156800 based, and 6821 PIA. Can anybody Help! Help! Tel:(0734) 789014.

2X81

Software Wanted 30% Royalties Paid

Send brief details to: PSS, 112 Oliver St., Coventry.

ATOM BONTWART

TURTLE TALK - A new language for Atom. Ideal for children and newcomers to programming. Teaches structure of design, and geometry also! Needs 12K RAM and F.P: ROM. £18 for Eprom, cassette and documentation, or S.A.E. for details. M.J. Baker 5 Edinburgh Road, Hanwell, London W7 3JY.

TIE9/4 A8SIEIAANCD

ADVICE, LISTS, DEBUGS, BESPOKE PRO-
GRAMS FOR T199/4. For detaiis send S.A.E. Stephen Shaw, 10 Alstone Road, Stockport, Cheshire SK4 5AH.

Electronics \&

Computing Monthly

SPECIAL OFFER
 TO PRIVATE
 ADVERTISERS

First 10 words free - then 24p per word (subject to minimum total of 20 words, i.e. minimum cost of $£ 2.40$).

Please print biock capitals one word per box		SECTIONHEADING			
Free	Free	Free	FREE	Free	FREE
FREE	FREE	FREE	FREE		

Signed

ZXILARDWARE

ZX81/ZX80 (BK ROM) PLUS TWELVE FUNCTIONS! EPROM CARD + Pre-Programmed 2716 EPROM adds VERSATILITY to your ZX-Computer. Space to spare for future development or your own M/C Routines. Fits between Computer and any size RAM.
TOOLKIT FUNCTIONS:-
RENUMBER (GOTO \& GOSUBs correctly Renumbered). FILL screen with any Character INSTANTLY. SIZE of your Program (BYTES). FREE Memory in BYTES. BLOCK-DELETEany section of your Program. FAST-DELETE from any point to the end. D-HEX Converts Decimal to Hexadecimal. HEX-D Hexadecimal to Decimal. M/LOAD Quick M/C Loading Routine. LIFE M/C version of Cell Generation. + MORE TO COME! Price $£ 17.95$ (inc p\&p). ORME ELECTRONICS, 2 Barripper Road, CAMBORNE, Cornwall.
ZX80/81 TOPPIX GRAPHICS UPDATE. Detailed D.I.Y. information £2 plus S.A.E. ZX81 Programs S.A.E. for list. N.J. Petry, 3 Lester Drive, Worle, W.S.M. BS22 ONG.

2XTYEXT 16K
ZX81 TELETEXT PROGRAM (20 Pages). Similar to Ceefax and Oracle. Fill the pages with anything; graphics allowed as well as text. Cassette £2. Details (S.A.E.) 17 Torry Drive, Alva, Scotland FK12 5NQ.

PROGRANMMING

SERIOUS ZX81(16K) ACCOUNTS PRO-
GRAMS. 2 programs in one package. Ideal domestic/small business use. Continuously updated, date stamped statements. Complete documentation, 5 pages. "Self TeachPrograms". Short programs to help you construct your own programs, including:- Setting up Arrays, sorting, searching, counting, decision making tests, error messages, look up tables and menu driving with simple flowcharts for all the above, full documentation. $£ 1$ each or both for $£ 1.80$ plus $4^{\prime \prime} \times 9^{\prime \prime}$ min. s.a.e. Established customers £0. 80 for "Self Teach Programs" J. Aitken, 51 Whitcliffe Lane, Ripon, Yorks. Tel: Ripon 2121.

INDEX TO ADVERTISERS

Albol Electronics
Algray
Black Star Lto
CompShop
Computer Keyboards
Computer Services.
Computer Shack Ltd.
Computer Supermarket
i. .

Control Technology.
Croydon Micros
Discom.
Dk'tronics.
EDA Sparkrite Lid.
Emprise Computers
Fuller Micro Systems Gills.
G.S.C. (UK) Ltd.

Hilderbay Ltd.

JSP
Micro Business Systems
Micro-Print Lid.
Micro-Spares.
Micro Styie
Microvitec Lid.
Midwich
MS
Program Power.
Sharp Electronics (UK) itd.
Sllica Shop..
Silicon Centre
Storkrose Ltd.
Tangerine .
Thurnall (Electronic) Eng.
Video Soltware Ltd.
Watford Electronics

ACCESS TO THE OUTSIDE WORLD
Using our programmable INPUT/OUTPUT controller based on the Z80A P10 you can use up to 16 programmable input/output lines, all T.T.L. compatible. Control of the port is carried out from within programmes giving a whole new dimension of uses for your ZX81 computer. The port can be used WITH or WITHOUT the 16K RAM PACK \& PRINTER. Available in kit form or assembled, and comes complete with instructions, a pack of software notes. \& circuit ideas.
In kit form $£ 13.99$ assembled (add 50p postage \& packing $+15 \%$ VAT). Snap on Analogue Card and Relay Board available shortly. Send S.A.E. and 35p for details

PROFESSIONAL PROGRAMS FOR THE SINCLAIR ZX81 + 16K SOFTWARE DESIGNED FOR PEOPLE BY COMPUTER PROFESSIONALS

```
THE HILOERBAY PAYHOLL E25*
    - It 30 employeas. Waakly, mon
    Very easy to use.
- Pavzlips and summumes pmited.
- All pay iavels and numnric tax codes catered for. All National
    Insuramie contributions lncluding contracted-outl.
    - Provision for pre and post tax changes for any resoson
- Last-minute changes no protiem.
-Will aiso work backwards! fcomputa gross and deductions from
    nat peyi.
- Possible to go back to manual calculatons at env tima you
don't dapend on your computer!
- Programmantainad and updated
-Easuy used by the non. specielisi
    handied. Senior menagars can proc:ess senior staff salaries
        confidentasly
-Check your own pay!
-Will hanclie a pavioll of five hundred emple vens (il with 48K
    RAM packt
    - The Inignd Aavenue does not 'approve' comnuter pragranis iwe
        did askl. The Hitderbay pavioll satisfactorily deals with the 21
        tast cuses of
THE HILOERBAY PAYROLL E25*
Very eas ing Wakiy, monthly, atc. No tables noednd.
- Payzlips and summieres printed.
- All pay lavelz and numbric tax codes catered for. All National
- Provision for pre and post tax changes for any reason
- Last-minute changes no probiem
- Will siso work backwards! Icomputa gross and deductions from Possitre
- Possibet to go back to manual calculatons at env tima you
don't dapend on your computer!
- Program mantainad and updated
nacessary, but can ba arranged by Hiderbay Lid. Traming not
- Easuly used by the non- specielís
handied. Senior menagers can prociess semior staft salaries - Chendidentialy.
- Check your own pavi
- Will handie a payioll of fiva hundred emple vens (il with 48 K
RAM pack
- The Intignd Aavenue does not 'approve' cornuirter pragranis iw
did eski. The Hitcerbay paytofl satisfactoriv deals with the 21 iast cases of inland Pevanue systems unit note sbries 6 numbar
4 annex \(B\)
``` .

THE HILDERBAY STOCK CONTROL PACKAGE \(£ 25\)
- Program li up to 400 items in 16 K , up to 2000 in 48 K . Item code \&/or description, suppliet coda, type code, stock leval, re order level, unt price. Prints lists by supplier, by ivpe. of understocked items. or all hems.
Progranitl: up to 2500 tems in 16 K , 8000 Hems in 48 K
Numerical code and stock level andy.
Numbrical code and stock level only.
of 2700 in well under two saconds!

2XB1 implamentation of a powerlul tool of modern manegement Cesigned for practical use. but also suiteble for learning about

HILDEREAY FINANCIAL PACKI \(£ 8\)
VAT: Given a mixture of bills with and without VAT ut saveral
rates. prints table of: price. VAT. zotal. VAT este. Displeys and prints running totals
Morfgage: How much longer will your morgage taka to rapay is you pay \(£ 25\) teas par month? The answar may surprise you.) How much muet you pay per month to repey in 15 yaara 7 How lory to repay at f200 per month? How much of vou latest went
towerds interest, and how much towards principal fthe anawer will shock you)? Results given nithar for UX Builiding Suciaty or (different) bank loan.
Lasn: Caiculatas one of the following in terms of the other three: principel, number of peymants, instaiment interest.

\section*{BUDGET f. 15}

The user sets up this program with any haedinga chosen. The program then kaeps track of expenses under tha varioua headings end print details. It is possible tbut not obligatory) to do this on s month.by-month basis for up to 1 yaar ot a tima. A budget can be entared, end expensess comparad with in. Expenditure cen be
graphod month by month. The program is evitable for buskines: uss ikeeping track of saveral accounts) and for homs expanses.

\section*{HILDERBAY GAMES PACK 1 CB}

Golf: A rather difficult adventura. We guarantee that you cen gat out with the treasure - but we re not telling vou how! picking words frorn the list until ona of you gets a winning set of pucking
latters.
- All programs require 1 GK RAM pack. All prices include VAT, postage and packing. C.O.D. (cash on delivery pay the postman) orders are accepted for a supplement of \(£ 2\) per order. Urgent orders no problem.
- All programs are supported by Hilderbay Ltd. we won't abandon you to your fate. Cassettes are produced with great care and are guaranteed.
- Programs are designed for use by people who are not familiar with computers.
- All programs are supplied with full documentation. Manuals for programs marked (") can be bought separately (E2, refundable on program purchase).
- Programs can be demonstrated (by appointment only). Further details available on request
- Memotechs demonstrated and sold. Reliable 16K RAM pack 42 Ibs.
- Software also supplied for mainframe computers. Hewlett-Packard 9845 and 85, vatious microcomputers.

Hilderby software is soid by us and our authorised dealers.

\section*{E999 , vat}
- 4 Mhz Z-B0CPU - Dynamic RAM - 2 K ROM - BASIC is provided * High Resolution Graphies " \(9^{\prime \prime}\) High Focus
 Characters \(\times 25\) line display - Electro Magnetic Cassette Deck included - ASCli keyboard - Numenic Keypad Sound Output - Built-in Clock and Music
Avaliable Soon-Discs, Printers and ether Accessories.
WE ARE NOW STOCKING THE APPLE II AT REDUCED PRICES

AUTOSTART
EURO PLUS
48 K
f649
Getting Started APPLE II is fastor, smallor, and more powerful than its predocessois. Andif's inore fun to use too because of built-in features like
- BASIC The Language that Makes Progranming Fun. - High-Resolution Graphics ith a 54.000 -Point Arrayl for Finely- Detailed Disploys. Sound Capabitity that Brings Programs to Life. Hand Controls ior Ganves and Other 48 K Bytes of RAM. 12 K Bytes of ROM: for Big System Performance in a Smail Packaye. - Eight Accessary Expansion Siots to fet the Systent Grow With Your Noeds.

You don't neod to be an expert to enjoy APPLE 11 . If is a cormplete, reedy-ic. ruts computer. Just connect is to a video display end start using progrants for witting your own) the first day. You'll find that its witorial manuals help you make it your own personel problem solver.

MICROLINE 80
\(£ 289\) VAT
1080 cns Uni-directionsl - Sniall size: 342 (W) \(\times 254\) (D) \(\times\)
 end Pin Foed Low neise: 65 dB Low weight: 6.5 kg MICROLINE 82
£449 +VAT
- 80 cps Bi-directional logic seeking - Smail size: 360 (W) -80 cps . \(\times 1281 \mathrm{D}) \times 130(\mathrm{H}) \mathrm{mm}\). 160 cherecters, 96 ASCII and 64
\(\times 4\) graphics, with 10 National character get Variants. © 4
Charactar sizes: 40 . 66 , 80 or 132 chars line. Built in paralleal and seitial interfaces. © Friction and Pin Foed poralkel and senial intertaces. 6 Friction and Pin Foed MICROLINE 83 E649 VAT - 120 cps bi-directional logic seeking e 136 column printing on up to 1 Bin lorms e Small size: 512 IW) \(\times 328\) (D) \(\times 130\) \((H) \mathrm{mm}\). 160 charackers. 96 ASCll and 64 graphics with 10 National character-set variarits \(\bullet 3\) Character spacings: 5,10
and 16.5 Chars': ine. \(\quad\) Built in parallel and serial Interfaces and 16.5 Chars'in. © Built in paratlel and serial Interfaces
and
Friction and Pin Feed - Friction and
weight: 13 kg

The Radio Shack TRS-80 \({ }^{\text {TM }}\) Model III is a ROM-based The Radio Shack consisting of:
- A 12 -inch screen to display results and other information - A 65 -key console keyboard for inputting programs and data to tha Computer © 2.80 Microprocesssor, the "brains" of the systenn - A Real Time Clock Read Only Memory The system -A Real Time Clock © Read Only Memory
(ROM) containing the Model III BASIC Language (fully compatible with most Model I BASIC programsi © Randorn Access Memory (RAM) for storage of programs und data while the Computer is on lamount is expandabie fiom" \(16 \mathrm{~K}^{\prime \prime}\) to "48K", optional extra) * A Cassolte Interface for long term storage of progrums and data /requires a separate cassetto recorder, optional/extral - A Printer Intertace for hard-copy output of programs and data lrequires a separate line printer, optional/extral Expansion area for upgrading to a disk based system (optional: exira) - Expansion area for an RS 232 C serial conmunications interlace foptionali extro) All these components are contained in a single moulded case and all are powered via one power cord.

Disc Drives Kit with \(\mathbf{2 \times 4 0}\) Track Drives - 5693 + VAT
Disc Drives Kit with \(\mathbf{2 x 8 0}\) Track Drives - E729 + VAT

- Proportional Spacing . Right Margirn Justification - 3 way paper handling - Upper and lower case - True Deecendors Bi-diractional Paper Mode Underiining Super Scripts Pin and Fricion Foed - P0:132 Colsmm

739 as above with specfai feature of Dot Resolution Graphies.

HITACHI
\(\left.\begin{array}{c}\text { PROFESSIONAL } \\ \text { MONITORS } \\ 9^{\prime \prime}-£ 129 \\ 12^{\prime \prime}-£ 199.95 \\ \text { £ } 149\end{array}\right\}_{\text {VAT }}\)
- Rollabillty Solld slats circuitry using an IC and silicon transistors ensures high reliability. - 500 linas hopizontal resolution Herizental resolution in excess of 500 lines is achisved in picture center. Stable picture Even played back pictures of VTR cen be displayod without fittering. - Looping video input Videe input can be looped through with buill in termination switch. - Extornal sync operetion (available as option for \(U\) and \(C\) typos) - Compac construction two monifors are mountable side by side in a standard 19 -inch rack.

\section*{YOUR ZX80 IS NOW NO LONGER REDUNDANT}

Upgrade your ZXBO to the fuil animated graphics of the \(\mathbf{Z X 8 1}\). (No screen ficker).

FOR ONLY \(\mathbf{f} 12.95\), VAT IN KIT FORM Works only in conjurtction with NEW 8K ROM from Sinclair (Not Included).

\section*{INTRODUCING THE NEW GENIE}

Ideal for small businesses, schools, colleges, homes, etc. Suitable for the experienced, inexperienced, hobbyist.

NOW INCLUDED: Sound, Upper and lower case, Extended BASIC and Machine Code enabling the Writing and Execution of Machine Codes Programming direct from Execution
16K RAM 12K Microsoft BASIC
Extensive Softwara Range
Self.Contained PSU UHF Modulator Casselte. External Cassette Interface. Simply plugs into TV or Monitor. Complete and Ready to Go. Display is 6 lines by 32 or 64 Characters Switchable. 3 Marnnuals included, Users Guide. Beginners Programming and BASIC Reference Mannual. BASIC Program Tape Suppliat, Fixel Graphics.

\section*{£299 - VA}

The NEW GENIE II an idaal Business Machine. I3K Microsof! BASiC in ROM. 71 Kuyboard. Numeric Keypad. Uppar \(G\) Lower Case. Standard Flashing Cursor. Cassette Interiace 16K RAM Expundod externally to 48 K

GENIE I 8 II EXPANSION UNIT WITH 32K RAM £199 + VAT
parallel printer interface card
\(\mathbf{5 3 6 . 0 0}+\) VAT

TEAC DISK DRIVES
- TEAC FDS0A has 40 tracks giving 125K Bytes unformatred single density capacity.
The FD. 50A can bo used in double density recording made
- The FD. 50 A is Shugart SA4DO interface computible
- Directly compatible with Tandy TRS80 expansion
interface.
Also interfaces with Video Genie. SWTP. TRS80 North Star Horizon, Superbrain. Nascom, etc, elc. Address solection for Daisy chaining up to 4 Disks.
- Disks pius power supply housed in an attractiva grey case.
40 TRACK
Sirgle
Disk Drive E2A5 + VAT \(\quad \begin{aligned} & \text { Double } \\ & \text { Disk Drive }\end{aligned}\) E38: + VAT 77 TRACK

"Europes Largest Discount Personal Computer Stores'

Delivery is added at cost. Please make cheques and postal orders payabie to COMPSHOP LTD., or phone your order quoting BARCLAYCARD, ACCESS, DINERS CLUB oI AMERICAN EXPRESS number.
WITIL OKDER AND SHOR: CREDIT FACILITIES ARRANGED send S.A.E. for application form. 14 Station Road. New Barne1, Hertfordshire, EN5 10W (Close to New Barnet BR Station - Moorgate Line) Telephone: \(01-4412922\) (Sales) 01.4496596 Telex: 298755 TELCOM G OPEN (BARNET) - 10am - 7pm - Monday to Saturday NEW WEST END SHOWROOM:
311 Edgware Road, London W2. Telephone: 01-262 0387
OPEN (LONDON) - 10am - Epm - Monday to Saturday
- IRELAND: 19 Herbert Stuet. Dublin 2. Telephone Dublin 604165

TELEPHONE SALES
OPEN 24 hrs. 7 days a waek \(01-4996596\)
EDA SPARKRITE LIMITED 82 Bath Street, Walsall, West Midlands, WS 1 3DE England. Tel: (0922)614791 co
\begin{tabular}{|c|c|c|}
\hline & \[
\begin{aligned}
& \text { SELF } \\
& \text { ASSEMBLY } \\
& \text { KIT }
\end{aligned}
\] & \begin{tabular}{c}
READY \\
BUILT \\
\hline
\end{tabular} UNITS \\
\hline Sx 1000 & £12.95 & £25.90 \\
\hline SX 2000 & £19.95 & £39.90 \\
\hline TX 2002 & £29.95 & £59.90 \\
\hline AT. 80 & \(£ 29.95\) & £59.90 \\
\hline VOYAGER & £59.95 & \(\pm 119.90\) \\
\hline MAGIDICE & £ 9.95 & f19.90 \\
\hline
\end{tabular}

PRICES INC. VAT.POSTAGE \& PACKING

NAME ADDRESS

\section*{I ENCLOSE CHEQUE(S)/POSTAL ORDERS FOR}
£
cheque No
24 hr Answerphone
PHONE YOURORDERWITHACCESS/BARCLAYCARD
SEND ONLY SAE IF BROCHURE IS REOUIRED Allow 28 days for delivery

\section*{MAGIDICE \\ Electronic Dice}
- Not an auto item but great fun for the tamily
Total random selection
Triggered by waving of hand over dice
- Bleeps and flashes during a 4 second tumble sequence
Throw displayed for 10 seconds
- Auto display of last throw 1 second in 5
- Muting and Off switch on base
- Hours of continuous use from PP7 battery
- Over 100 components to assemble

\section*{SX2000}

Electronic Ignition
- The brandleading system on the market today - Unique Reactive Discharge - Combined inductive and apacilve Discharge
- Three position changeover switch - Over 130 components to assemble
- Patented clip-to-coil fitting
- Fits all 12 v neg. earth vehicles

\section*{SX1000}

Electronic Ignition
Extended coill energy
storage circuit
- Three position changeover switch - Over 65 components to assemble - Patented clip-to-coil fitting - Fits all 12v neg. earth vehicles

Step-by-step fully and fitting in componenghout.

Sharp bring you the MZ80B. A machine that offers you functions previously only associated with more powerful, more expensive computers; that gives you versatility to handle a huge range of software and hardware applications in scientific, business and personal use.

The MZ80B opens up a new world of graphic display potential, moreflexible data storage and retrieval, and ease of operation.

Here is the computer from the future. Availabletoday

\section*{Stunning Graphic Dieplay.}

Seeing is believing. The large-screen, high-focus, green-face display incorporated in the MZ80B gives you highresolution graphics of \(320 \times 200\) dots.

An additional graphic RAM can be added which allows another \(320 \times 200\) dot resolution pattern to be displayed.

This dual high-resolution graphic ability is especially useful for simulating and displaying a dynamic picture It can display 40 characters \(\times 25\) lines or 80 characters \(\times 25\) lines via software switching.

In addition there are facilities for full, on-screen editing, reverse video, partial scrolling and a full range of graphic symbols.

\section*{Character and Graphic Printer:}

This fast, quiet printer will reproduce your graphic displays and, of course, printout upper and lower caseletters and symbols. A tractor/friction feed version is also available.

\section*{Data Starage/retrieual.}

The MZ80B has a remarkable memory. 64 K of RAM. And that constitutes all the memory area, giving flexible storage of any computer language and its software The cassette deck is electromagneticallycontrolled, with a data transfer speed of \(1800 \mathrm{bits} / \mathrm{sec}\) combined with a unique
programme search facility to make data storage and retrieval super-fast.

A typewriter-style keyboard incorporates characters and symbols plus a numeric key-pad and ten user-definable keys for fast and simple operation. BASIC is, of course, provided with Z-80 Assembler Packages, PASCAL and a BASIC compiler.

\section*{Flappy Disk Drive.}

A twin Floppy Disk Drive unit can be added which will give you 560 bytes of storage on double-sided, double-density disks.

\section*{Comprehensive Documentotion.}

Each MZ80B comes complete with a full set of documentation including an owners' manual giving full circuit diagrams, a monitor reference manual and programming manuals.

\section*{Interfuces}

RS-232C and IEEE Interfaces are available from January 1982 allowing the MZ80B to communicate with scientific instruments and other peripherals.

\section*{CP/ \(11{ }^{2} 2.2\)}
\(\mathrm{CP} / \mathrm{M}^{*}\) is also available making a wide range of packages immediately available including wordprocessing, financial modelling, data base management to mention but a few. CP/M* also increases the disk capacity to 680 K .
(CP/M* is a Trade Mark of Digital Research Ltd).
 SHARP HOUSE, THORP RD., NEWTON HEATH. MANCHESTER M109BE. TELEPHONE: 061-2052333
```


[^0]:    1
    REM
    Graphic T
    Inverse K
    $\gamma$
    Graphic A
    NOT (Function N ) - Four times
    ( (Left bracket - Shift I)
    IF (Use Shift 3 to get "THEN", press U to get "IF" then RUBOUT "THEN") IAN (Function E)
    2. The graphic character used in tine $\mathbf{1 0 7 0}$ is a graphic $\boldsymbol{H}$ twice.

    The graphic character at Line 1160 is a graphic $\mathbf{B}$ (inverse*). This is also
    used at lines 1255 and 1730 .
    Line 1340 is six "inverse spaces"
    Line 1705 is "inverse H "
    Line 1710 is "graphic H "
    Line 1715 is "graphic A"
    Line 1720 is "inverse space"
    Line 1725 is "full stop"
    Line 1730 is "inverse"
    Line 1735 is "space"
    Line 1005 says GOTO 1105 which does not exist. This does not matter as BASIC will automatically continue to tine 1110 .

[^1]:    
    
    

[^2]:    CONTROL TECHNOLOGY,

[^3]:    
    I

    Name ..... Address
    Adarss ..... I
    ．．．．．．Day Tel．No．．．．．．．．．．Home Tel．No． ..... I
    Value of house（est）．．．．．．．Age of house ..... I
    Present $\mathrm{B} /$ Soc loan ．．．Total other loans $\mathrm{O} / \mathrm{s}$ ..... I
    Total monthly repayments（including B／Soc）． ..... I
    Mail to：ECM Insurance Bureau， 18 Hamilton Road， ..... INottingham NG5 IAU．

